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4. PERSPECTIVE-CORRECT FORMATION
OF GRAPHIC IMAGES

   

       
 

              
 
 
            
 
     
 
 
          

   
 
 
             

   
 
 
 
    

   
 
 
 
 

   

      
 

              
 
 
            
 
      
 
 
          

   
 
 
              

   
 
 
 
    

   
 
 
 
 

4.1. FEATURES OF FORMING REALISTIC THREE-DIMENSIONAL 
GRAPHIC IMAGES

  The scope of computer graphics, which is the main means of com- 
munication between humans and computers, is constantly expanding, as 
graphic images are the most visual and adequately reproduce real objects 
and processes� The main task of modern computer graphics is to syn- 
thesize realistic three-dimensional images that reproduce real-world ob- 
jects to the maximum extent possible� At the same time, it is important 
to achieve a graphic scene generation performance acceptable for a given 
application� Image synthesis involves the execution of a certain sequence 
of specialized stages, which together constitute a 3D graphics pipeline 
[1, 2]�

  The process of creating a three-dimensional image can be divided into 
the following main stages: the stage of describing a three-dimensional scene, 
the stage of geometric transformations, the stage of rendering, or visualiza- 
tion, and the stage of displaying the image on a monitor or printer� Each 
stage, in turn, contains several stages�

  At the stage of describing a three-dimensional scene, the constituent ob- 
jects of the scene, their main characteristics, state and relative position, and 
the strategy for further actions are determined� In the object space, three-di- 
mensional objects, materials, light sources, virtual cameras, and additional 
tools for modeling special effects, including atmospheric phenomena, are 
operated with�

  Synthesis of graphic images is a complex task, so in most cases, a graphic 
scene is decomposed into its components� Surfaces, including curved ones, 
are approximated by a polygonal mesh, which in most cases includes trian- 
gles� At this stage of computer graphics, the representation of surfaces by tri- 
angles is one of the ways to create real-time dynamic images and processes 
in an interactive mode�

  Oleksandr Romanyuk, Oksana Romaniuk 

DOI: 10.31274/isudp.2024.151.04

      The article presents advancements in color reproduction techniques, enhancing 
the realism of graphic scenes. It introduces novel methods for accurate shading of 
three-dimensional objects, improves the Barenbrug perspective-correct texturing 
method, and proposes quadratic approximation for perspective-correct texturing, 
reducing computation time and error.
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At the stage of geometric transformations, in addition to tessellation, 
affine transformations are also performed, such as rotation, scaling, and 
displacement� After that, the triangles are merged into a solid wireframe 
model� To take into account the curvature of the surfaces, vectors of nor-
mals to the vertices of the constituent triangles are determined, for which 
geometric parameters are predefined� 

When generating graphic images, it is necessary to take into account 
a number of cameras, which implies the inclusion of the corresponding 
stage in the graphic pipeline� The position of the cameras makes it possible 
to exclude invisible objects and surfaces, as well as objects that are located 
outside the camera’s field of view, and, as a result, reduce computational 
costs� 

At the final stage of the geometric transformation stage, a projection of 
the three-dimensional scene onto the visualization plane is formed, i�e� the 
output is a set of polygons in screen coordinates� 

Projection is the mapping of points specified in a coordinate system with 
dimension E to points in a system with a smaller dimension� In computer 
graphics, we mainly consider projections of three-dimensional images onto 
a two-dimensional picture plane� Flat geometric projections are divided 
into two main classes: central and parallel� The difference between them is 
determined by the ratio between the center of the projection and the projec-
tion plane� If the distance between them is finite, then the projection will be 
central, but if it is infinite, then the projection will be parallel� In real space, 
the reflection of rays from objects is perceived at the point of the observer’s 
location, i�e�, according to the principle of central projection [1]� Correct 
color reproduction takes place provided that the components of the col-
or intensities of the corresponding surface points in the world (object) and 
screen coordinate systems coincide� 

Existing shading methods do not provide correct color reproduction 
when shading three-dimensional graphic objects, since they do not take 
into account the z-coordinate in perspective projection� In this сhapter, we 
develop the theoretical foundations for correct color reproduction in per-
spective projection� 

At the final visualization (rendering) stage, pixels of the image of a 
three-dimensional scene are formed on the screen, which involves calcu-
lating not only their addresses but also color intensities� The rendering stage 
is the most time-consuming, since all operations are performed at the pixel 
and subpixel levels, unlike the geometric transformation stage, where only 
the vertices of polygons were processed� 
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At the rasterization stage, for a selected polygon that falls within the 
camera space, all its internal points are searched, which involves determin-
ing their addresses in the on-screen coordinate system� For the selected 
point, normalized vectors to the object surface, light source, and observer 
are calculated, as well as auxiliary vectors depending on the lighting model 
selected� These vectors are then used to determine the color intensities of 
the image points� The intensity value of the original light source is used or 
the color intensity value is sampled from the texture� If necessary, texture 
filtering or anti-aliasing is performed to eliminate artifacts� 

When forming images of relief surfaces, the normal vector to the surface 
is perturbed by one of the known methods� 

Additional procedures can be applied to the final image to simulate var-
ious natural phenomena� 

At the post-processing stage, pixel visibility is checked once again and 
the finished image is displayed on a screen or printer� 

In the course of their evolution, GPUs have gone from graphics pipe-
lines with hard logic to programmable computing environments� Over the 
course of several generations, individual stages of pipelines were gradually 
replaced by programmable devices called shaders [1] A shader is a program 
that performs a certain stage of the graphics pipeline to determine the final 
parameters of an object or image� There are three types of shaders: vertex, 
pixel, and geometric, which process polygon vertices, pixels, and polygons, 
respectively� Vertex shaders determine the order of transformation of polygon 
vertices� Pixel shaders are used to dynamically change the properties of in-
dividual pixels� They calculate the color of a single pixel based on the input 
data received from the vertex raider and the specified lighting parameters� 
Geometric shaders were first used in NVidia 8 series video cards� They pro-
cess primitives and can create new vertices and generate new primitives with-
out using CPU resources� 

A special place among the numerous stages of the graphics pipeline is 
occupied by the lighting stage, the texture mapping stage, and the paint-
ing stage� These three stages are directly responsible for the realism of 
objects� 

Creating realistic images in computer graphics involves accurately con-
veying the external characteristics of natural objects in their computer mod-
el� The features of a realistic image are depth rendering, which allows us 
to determine the distance between objects, lighting of objects, as well as to 
evaluate the shape, color, and material of objects, shadow casting, and other 
optical effects� 
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One of the ways to increase the realism of an image is to display fine 
details, irregularities, and relief on the surfaces of objects that make up a 
graphic scene� This can be achieved by changing the geometry of the object 
[3]� The geometric model of the object is divided into a large number of 
low-level polygons, the vertices of which are shifted to the appropriate dis-
tance and in the appropriate direction� The larger the number of polygons 
and the smaller their size, the more realistic the object looks� This approach 
allows to display the relief and irregularities on the surface quite realistical-
ly, but is characterized by high computational complexity and low perfor-
mance� It is difficult to use it to display such fine details as sand, skin pores, 
wood structure, etc� 

An alternative to changing the geometry of an object is texture overlay 
[1, 2], which is widely used in graphics systems� A texture is a raster image 
that is superimposed on the surface of a polygon, which make up 3D mod-
els, to give it color or the illusion of relief [4]� Textures allow to simulate a 
variety of materials, complex surface structures (porous, with cracks, etc�) 
that are difficult to implement with a set of polygons� The quality of the tex-
ture surface is determined by the texture pixels — the number of pixels per 
minimum texture unit� Since a texture is an image, its resolution and format 
play a crucial role, which ultimately affects the quality of the synthesized 
graphic image� Therefore, in this chapter, we propose methods to improve 
the efficiency of perspective-correct texturing� 

4.2. PERSPECTIVE-CORRECT COLOR REPRODUCTION 
WHEN INTERPOLATING COLOR INTENSITIES 

In the classical implementation of Gouraud shading [1–4], the z-coor-
dinate is taken into account only at the vertices of the triangle when deter-
mining their color intensities� Subsequently, the z-coordinate is used only 
to remove invisible surfaces� Thus, the perspective of the object is not taken 
into account when Gouraud coloring� 

Fig� 4�1 shows a line segment ,А В  projected onto an screen plane� When 
using linear interpolation to calculate the color intensities along the edge 
А В , which is located in the world coordinate system, the color intensity 

at point Q  ( )A Q B Q is equal to ( ) / 2Q A BI I I � Since BQ QA ,  

this regularity at the point Q  will be broken (Fig� 4�2)� 
The example above shows that there is a violation of the regularity of 

color change between a real object and its image on the screen� 
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Fig� 4�1� Perspective vector projection on the screen plane 

 

Fig� 4�2� Color mismatch for segments in the screen and world coordinate systems 

This subsection discusses the issues of correct coloring of three-dimen-
sional objects using the Gouraud method� According to the Gouraud meth-

od [1–4], the intensity of a color along a segment АВ  in the world coordi-
nate system is determined by the formula: 

 ( )w A B AI I w I I � 

In the screen coordinate system: 
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 ( )�v A B AI I v I I  

Since v w , proportionality is violated when reproducing colors in all 

cases when AB  and A B  are not parallel (Fig� 4�2)� Let’s find the relation-
ship between the variables v and w� 

Let the observation point be located at a distance d  from the screen 
plane at the origin of the yoz coordinate system (Fig� 4�1)� 

For the segment А В , write the parametric equations 

 1 2 1 1 2 1( ), ( )�w wz z w z z y y w y y  

For the segment AB  ( )u A A By y u y y � 
Given the similarities of the corresponding triangles (Fig� 4�1), we can write 

 
1 1 2 2

; ; �A B u

w w

y y yd d d

z y z y z y
 

From the last expressions we find 

 1 2
1 2; ; �A B w

w

u

z y z y y
y y z d

d d y
 

Taking into account that 1 2 1( )wy y w y y and the values for 1 2,y y  

 

1 2 1

1 2 1)

1 2 1

( ( ))( ( )

( )

( ( ))
�

( )

A B A

w

u A B A

A B A

A B A

z y z y z y
w dy w y y d d d dz

y y u y y

z y z y z y w

y u y y

 

The right-hand side of the last expression is equivalent to the equivalent 

value, which is equal to 1 2 1( )z w z z � We get the expression 

 1 2 1
1 2 1

( ( ))
( )�

( )
A B A

A B A

z y z y z y w
z w z z

y u y y
 

After the transformations, we find that 

 1

2 2 1( )

u z
w

z u z z
� 

The last expression relates the parametric variables ,w u  using the z

-coordinates of the edge А В  in the world system� 
According to the Gouraud method, the color intensity along an edge is 

determined by the formula: ( )�w A B AI I w I I  Substituting the w  val-
ues into the above expression, we obtain 
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1

2 2 1

( )
( )

w A B A

u z
I I I I

z u z z
� 

Let’s estimate the error that occurs when the perspective correction of 
color intensity is not taken into account� 

1

2 2 1

1

2 22 2 1

1 1

( ) ( )
( )

1
( ) ( ) ( ) (1 )�

( )
(1 )

A B A A B A

B A B A

u z
I I I I I I I u

z u z z

u z
I I u I I u

z zz u z z
u

z z

  (4�1) 

Fig� 4�3 shows a graph of the change 
2 2

1 1

1
(1 )

(1 )

u
z z

u
z z

 in the 

multiplier for different ratios 2 1/z z � 

 

Fig� 4�3� Dependence  on u 

When 1 2z z  the graph of dependence is similar to the one above with 

the difference that 0 , and the maximum value occurs at 1 u � Let de-

termine the maximum values  for different ratios 2 1/z z � To do this, find 
the derivative of  and set it to zero� We get two roots 
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2 2 2 2

1 1 1 1

2 2

1 1

,

1 1

z z z z

z z z z

z z

z z

� 

Researchers have shown that the first root determines the argument at 

which the function has a maximum value for 2 1z z , and the second root 

determines the maximum value for 1 2z z , and the maximum values of  
coincide, so we will give only one expression for the first root� 

2 2 2 2 2

1 1 1 1 1

2 2 2 2

1 1 1 12 2

21 1

1

( )( 1)
1

max (1 ) �

1 1

(1 )

1

z z z z z

z z z z z

z z z z
z z z zz z

zz z

z

 

The graph of the maximum value  versus the ratio 2 1/z z  is shown in 

Fig� 4�4 for different ratios 2 1/z z � 

 

Fig� 4�4� Graph of dependence of the maximum value  on the ratio 2 1/z z  

The graph shows that not taking into account the perspective of a graph-
ic object leads to visual differences between images� It should be noted that 
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in expression (4�1), the maximum value of the difference B AI I  is equal 

to BI  and occurs when the intensity at a point В  is equal to the maximum 
possible� 

4.3. DETERMINATION OF VECTORS TO TAKE INTO ACCOUNT 
THE PERSPECTIVE OF A THREE-DIMENSIONAL SCENE 

In the classical implementation of Phong shading [1–4], there are no 
geometric transformations that are inherent in perspective projections, 
which certainly affects the realism of reproducing graphic scenes� If Gouraud 
shading requires perspective correction of the color intensity of points, then 
when shading by Phong, it is necessary to correct the normal vectors and 
subsequently determine the color of the pixels� When correcting the normal 
vectors, it is necessary to take into account all the stages of geometric trans-
formations established by the OpenGL and DirectX 10 standards� 

We will consider the right-handed coordinate system [1], which is used 
in most computer graphics programs� Fig� 4�5 shows the features of perspec-
tive projection in three-dimensional space� 

The volume of observation is set between the near and far cutoff planes, 

which are perpendicular to the axis wZ � The display of the scene projection 
includes only those objects that are inside the cut-off pyramid� According to 
the OpenGL standard [1], the observation volume is displayed in a symmet-
ric normalized cube (Fig� 4�6 — left image)� 

 

Fig� 4�5� Pyramidal observation volume of the perspective projection 



129

 

Fig� 4�6� Offset of the origin of the coordinate system of the normalized  
observation volume 

Let a line segment w wA B  be given in the world coordinate space 
(Fig� 4�5)� In the plane of observation, it corresponds to the segment 

�v vA B  

The normalized coordinates , ,norm norm normX Y Z  of the point , ,w w wX Y Z  
in the world coordinate system are found by the homogeneous coordinates 
using the formula [2] 

 

( ) / 2
,

( ) / 2
,

,

n x w x m n
norm

w

n y w y m n

norm

w

z w z

norm

w

Z S X S X X
X

Z

Z S Y S Y Y
Y

Z

S Z t
Z

Z

 

where z

22 2
, , ,m n m n

x x z

m n m n m n m n

Z Z Z Z
S S S t

X X Y Y Z Z Z Z
� 

The contents of the normalized observation volume must be converted 
to screen coordinates� For simplicity, let’s move the origin of the coordi-
nate system of the normalized cube from its center to the leftmost corner, 
that is, shift all coordinates by one (Fig�4�6)� Then the transformation ma-

trix for the coordinates ( 1), ( 1),n nX Y  ( 1)nZ  will have the following 
form [3] 
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0 0
2

0 0
2

0 0
2

0 0 0 1

vm vn
vx

vm vn
vy

vm vn
vz

X X
SM

Y Y
SM

Z Z
SM

� 

In most cases, the zero depth value is correlated to the screen area, for 
which 0vzSM � The above transformations can be written in matrix form 

 

0 0
2

0 0
2

0 0 01
2

0 0 0 1

2
0 0

2
0 01

2
0 0 1

0 0 1 0

vm vn
vx

v

vm vn
v vy

v
vm vn

n m n

m n m n

w

n m n

w
m m m n

ww

n m n m

n m n m

X X
SM

X
Y Y

Y SM

Z
Y Y

Z X X

X X X X
X

Z Y Y
Y

Y Y Y Y
ZZ

Z Z Z Z

Z Z Z Z

1

1

1

0

 

From the latter system, we find that 

 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( )
( )

( )

vm vn n w n w vx m n w

w n m

v
vm vn n w n w vy m n w

v

w n m
v

w m
n vm vn

w n m

X X X Z Z X SM X X Z

Z X X
X

Y Y Y Z Z Y SM Y Y Z
Y

Z Y Y
Z

Z Z
Z Z Z

Z Z Z

� 

The v -index determines whether the point belongs to the on-screen co-
ordinate system, and the w -index — to the world coordinate system� From 
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the resulting system of equations, it is easy to find the , ,w w wX Y Z  point’s 
coordinates in the world coordinate system� 

 

( ) ( ) ( )

( )

( ) ( ) ( )
�

( )

( ) ( ) ( )

( )

vx Av m n n vm vn

vm vn n

Aw
vy Av m n n vm vn

Aw

vm vn n
Aw

vz Av m n n vm vn

vm vn n

SM X X X X X X

X X Z
X

SM Y Y Y Y Y Y
Y

Y Y Z
Z

SM Z Z Z Z Z Z

Z Z Z

  (4�3) 

The system of equations (4�3) is similar for the points B  and C , and 
its denominators do not depend on the location of the points in the world 
system and are not equal to zero, provided that there is indeed a display win-
dow in the screen coordinate system� In the world coordinate system, for the 

current point wC  belonging to the segment w wA B , we can write 

 

Cw Aw Bw Aw

Cw Aw w Bw Aw

Cw Aw Bw Aw

X X X X

Y Y t Y Y

Z Z Z Z

�  (4�4) 

Similarly, for the screen coordinate system for the point vC  of the seg-

ment v vA B  

 �Cv Av Bv Av

v

Cv Bv Bv Av

X X X X
t

Y Y Y Y
  (4�5) 

Let’s write the first equation of the system (4�4) taking into account the 
first equation of the system (4�3)� 

 

( ) ( ) ( )

( ) ( ) ( )

(( ) ( ) ( )

( ) ( ) ( ) ) �

vx Cv m n n vm vn Cw

vx Av m n n vm vn Aw

vx Bv m n n vm vn Bw

vx Av m n n vm vn Aw w

SM X X X X X X Z

SM X X X X X X Z

SM X X X X X X Z

SM X X X X X X Z t

 

In the last equation, instead of cvX  and cwZ  in accordance with the first 

formula of system (4�5), substitute the value of ( )Av Bv Av vX X X t � We ob-
tain 
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( ( ) ) ( ) ( )

( ( ) )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

vx Av Bv Av v m n n vm vn

Aw Bw Aw w

vx Av m n n vm vn Aw

vx Bv m n n vm vn Bw

vx Av m n n vm vn w w

SM X X X t X X X X X

Z Z Z t

SM X X X X X X Z

SM X X X X X X Z

SM X X X X X X Z t

 

Opening the brackets and performing the equivalent transformations, we 
find that 

 
( )

Аw v
w

Bw v Bw Aw

Z t
t

Z t Z Z
�  (4�6) 

Dividing the numerator and denominator of the fraction by BwZ , we 
obtain 

 

(1 )

v
w

Bw Bw
v

Aw Aw

t
t

Z Z
t

Z Z

�  (4�7) 

If we know the vectors of the normals lN  and pN , respectively, at the 
left and right points of the triangle rasterization line, then the intermediate 

vector sN  can be found by the formula 

 ( )�s l w p lN N t N N  

Failure to take into account the depth of the object when calculating the 
vectors leads to an error in determining its orthogonal components, which 
can be determined by formula (4�2) by replacing the color intensity value 
with the value of the orthogonal component� 

For perspective-correct color reproduction in Phong shading, it is nec-
essary to use nonlinear interpolation of normal vectors using the variable 

wt � Unfortunately, the calculation of wt  by formula (4�6) involves perform-

ing a division operation for each current value of vt � Let us consider the 

possibility of approximation wt  to simplify the hardware implementation� 

Since the dependence of wt  is nonlinear, the use of linear interpolation 

over the entire variable interval of vt  is excluded� Let’s approximate wt  

with a second-degree polynomial 
2 �v va t b t c  Let’s find the unknowns 

, ,a b c � To do this, let’s create a system of equations using three points 
0, 1, 1 / 2�v v vt t t  
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0,

1,

1 1
�

4 2
Аw

Bw Aw

c

a b c

Z
a b c

Z Z
 

The system has the following solution 

 
2 3

, , 0�Bw Aw Aw Bw

Bw Aw Bw Aw

Z Z Z Z
a b c

Z Z Z Z
 

If Bw

Aw

Z

Z
, then 

2 1 3
, �

1 1
a b  

The quadratic approximation gives satisfactory results only for 3 � 
Fig� 4�7 shows a graph of the change in the absolute approximation error 

from vt  and � 
A higher approximation accuracy can be achieved by using piecewise 

quadratic interpolation on two intervals of change vt � For 0 0,5vt  

 
8 3

, , 0�
3 3

Aw Aw Aw Aw Bw

Bw Aw Bw Aw Bw Aw Bw Aw

Z Z Z Z Z
a b c

Z Z Z Z Z Z Z Z
 

For 0,5 1vt  

 2

8 2 9 5
, ,

3 3

3
�

3

Bw Aw Bw Aw Bw Bw

Bw Aw Bw Aw Bw Aw Bw Aw

Aw Bw

Bw Aw Bw Aw

Z Z Z Z Z Z
a b

Z Z Z Z Z Z Z Z

Z Z
c

Z Z Z Z

 

The analysis showed that in this case, with 2, 3, 4, 5  the maxi-
mum modulus of the relative error does not exceed 1 %, 4 %, 8 %, 13 %, 
respectively� As for three-dimensional objects, ,  usually does not ex-
ceed 3� 

Let’s consider for approximation using of a third-degree polynomial of 

the form 
3 2 �v va t b t ct d  To find the unknowns, we will create a system 

of four equations� To do this, we equate the values of the polynomial and wt  

(see Form 4�6) at points 0, 1 / 3, 2 / 3, 1vt � We find that 
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2

2

9 9 2
, ,

2 2 2 2

2 4 11
�

2 2

Bw Aw Bw Aw Bw Aw

Bw Aw Bw Aw Bw Aw Bw Aw

Bw Aw Bw Aw

Bw Aw Bw Aw

Z Z Z Z Z Z
a b

Z Z Z Z Z Z Z Z

Z Z Z Z
c

Z Z Z Z

 

 

Fig� 4�7� Dependence of the absolute approximation error modulus on vt  and  

The analysis showed that the use of cubic interpolation results in higher 
accuracy compared to piecewise quadratic interpolation� For example, at 

2, 3, 4, 5  the maximum modulus of the relative error does not exceed 
0�64 %, 2�9 %, 6�3 %, and 10�6 %, respectively� 

The angular interpolation (Fig�4�8) of unit vectors of normals between 

the initial aN  and final bN  vectors is performed according to the expres-
sion [2] 

 
sin((1 ) ) sin( )

( )
sin sin

a b

w w
N w N N , 

where [0,1]w  is a parametric variable that determines the position of the 

streaming vector ( )N w  with respect to the vectors aN  and bN , and  is 

the angle between the normal vectors 
aN  and bN � 
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Fig� 4�8� Determination of normal vectors in spherical-angular interpolation 

Since the vectors ,А ВN N  are unit (Fig� 4�8), the triangle OAB is isos-

celes� From the triangle  (   )  OBD OD DB we find that sin �
2

BDB N  

Given that 1BN , then 

 2 2 sin
2

AB DB � 

Consider the triangle OAC� 

 
180

2
OAC � 

0
0 180

180 �
2

OCA OAC w w  

From the triangle AOC, by the sine theorem [3], we find that 

 
0 0

sin( ) sin( ) sin( )

180 180 cos( )sin( ) sin( )
22 2

A

w w w
АС N

ww w

� 

For the world coordinate system, the current value of the parametric 

variable ,d which varies from 0 to 1, can be easily found through the ratio of 
the segment AC to AB� 
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sin( ) sin( )

2sin cos( ) sin( ) sin( )
2 2 2 2 2 2

w w
d

w w w

 

 
sin( ) 1

�
cos( )sin( ) sin( )

1 sin cos
sin( )

w

ww w

w

 

It was proved [3] that the following relationship exists between a para-

metric variable v  in the on-screen coordinate system and a variable d  in 
the world coordinate system 

 
2

1

1
,

1
1 (1 )

d
z

v z

 

where 2 1,z z  — Z-coordinates, respectively, of the start and end points of 
a line segment in the world coordinate system� For the screen coordinate 
system, the following relation is true 

 
1

cos( )
1 sin cos

sin( )

v , 

where  varies from zero to one� 

Substituting the value v  into the formula for d , we obtain 

 
2

1

1
�

cos( )
1 sin cos

sin( )

d
z

z

 

Thus, to find the vectors of normals in the world coordinate system, us-
ing the value of the parametric variable  in the on-screen coordinate sys-
tem, use the formula 

 

2

1

2

1

1
( ) cos( )

cos( )
1 sin cos

sin( )

1
sin( )�

cos( )
1 sin cos

sin( )

a

k

N w N
z

z

N
z

z
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For the world coordinate system 

 
1

cos( )
1 sin cos

sin( )

d
w

w

� 

When perspective-correct shading 

 
2

1

1
�

cos( )
1 sin cos

sin( )

d
z

z

 

Equating the right-hand sides of the above expressions, we find 

 
2

1

1 1

cos( ) cos( )1 sin cos 1 sin cos
sin( ) sin( )

w z

w z

� 

From the last equation we find 

 2

1

cos( ) cos( )
1 sin cos 1 sin cos

sin( ) sin( )

zw

w z
� 

After simplification, we obtain 

 2

1

cos( ) cos( )
sin cos sin cos

sin( ) sin( )

zw

w z
� 

We introduce the notation sin( )�à w  It is clear that 
21 cos( )a w  

 
2

2

1

1 cos( )
sin cos sin cos

sin( )

za

a z
� 

From the last equation we find 

 
2 2

1 sin( ) sin( )

( 1 sin( ) sin( )) ( 1 sin( ) cos( ) 2 sin( ( 1))

z
a

z z z i
� 

The above ratio involves the calculation of two functions at once, sine 
and cosine, which complicates the calculation and requires the storage of 
tabular data for two functions� Dividing the denominator and numerator of 

the fraction by 1 sin( ) sin( )z  and performing the equivalent transfor-
mations, we find 

 
2

1
sin( )

2
1 ctg (ctg( ) ctg( ))

1

w
z

z

� 
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The above expression is valid for all cases except when 
1 sin( ) sin( ) 0z � This is the case at the starting point of the tri-

angle rasterization line, where the normal vector is given and does not 
need to be calculated, so the proposed division can be performed� When 

the vectors ,А ВN N  coincide, 0 , there is no need to perform inter-
polation� 

Similarly, we find 

 
2

2
ctg (ctg( ) ctg( ))

1
cos( )

2
1 ctg (ctg( ) ctg( ))

1

z

z
w

z

z

� 

Finally, we can write down that 

 
2

( ) cos( ) sin( )

2
(ctg ctg( ) ctg )

1

2
1 ctg ctg( ) ctg

1

a k

a k

N w N w N w

z
N N

z

z

z

 

Let us introduce the notation 
2

ctg ctg( ) ctg
1

z
b

z
, then 

 
2

( )
1

a kN b N
N w

b

� 

When applying spherical-angular interpolation, the time-consum-
ing procedure of normalizing the normal vectors is excluded from the 
computational process� An important issue in this aspect is the need to 
normalize the vectors of normals obtained during the perspective-correct 
formation of images� Let us find the vector modulus according to the ex-
pression 

 

2

2

2

2
(ctg ctg( ) ctg )

1
( )

2
1 ctg ctg( ) ctg

1

a k

z
N N

z
N w

z

z
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2

2

2
2

2
ctg ctg( ) ctg

1

2
1 ctg ctg( ) ctg

1

a

z

z
N

z

z

 

 
2

2
ctg ctg( ) ctg

1
2

2
1 ctg ctg( ) ctg

1

a k

z

z
N N

z

z

 

 
2

2
2

1
�

2
1 ctg ctg( ) ctg

1

kN

z

z

 

The second term of the last expression is zero, since the vectors ,a kN N  
are orthogonal, and, as a result, their scalar product is zero� The vectors 

,a kN N  are unit, so 
2

kN =
2

aN =1� Taking into account the above 

 
2

2
1 ctg ctg( ) ctg

1
( ) 1

2
1 ctg ctg( ) ctg

1

z

z
N w

z

z

� 

Thus, it can be stated that normalization is not required for perspec-
tive-correct object rendering� 

The results obtained allow us to increase the realism of the generated 
images due to the fact that the color intensities of the corresponding surface 
points in the screen and object coordinate systems will coincide, that is, the 
adequacy of the generated image to the real object increases� 
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4.4. ANALYSIS OF METHODS FOR APPROXIMATING  
PERSPECTIVE-CORRECT TEXTURING 

One of the approaches to forming highly realistic images is to use tex-
tures [1, 5–9], which are mapped on graphic objects to give the image relief� 
The use of textures in many cases allows to successfully solve problems that 
are extremely time-consuming to solve by direct methods and significantly 
reduce computational costs� In texturing tasks, a correlation is established 
between screen and texture coordinates� 

Perspective-correct texturing (PCT) uses nonlinear functions, the cal-
culation of which involves time-consuming pixel-by-pixel operations� In 
the vast majority of cases, perspective-correct texturing is implemented us-
ing the following formulas [7, 9] 

 
ax by c

u
gx hy i

, 
dx ey f

v
gx hy i

,  (4�8) 

where u  and v  — texture coordinates (TC), x  and y  — screen coordi-
nates of an object, ���a i  — coefficients of the polygon to be textured� 

As can be seen from formula (4�8), finding the TC is a time-consuming 
procedure, since for each pixel of the image, six multiplication and two di-
vision operations are required, which significantly affects the speed of gen-
erating graphic scenes� Therefore, the task of simplifying the computational 
process of perspective-correct texturing is quite relevant� 

In order to simplify the computational process, scientists have pro-
posed various approaches to approximating perspective-correct textur-
ing� 

The simplest approach is linear interpolation, but it provides low accu-
racy of texture coordinates calculation and introduces significant artifacts 
and distortions in perspective rendering, which leads to the fact that the 
perspective of the object is not accurately reproduced� 

The quadratic approximation uses the equation 

 

2
1 2 3

2
1 2 3

( ) ,

( ) ,

u x A x A x A

v x B x B x B
 

where A
1
-A

3
, B

1
-B

3
 are approximation coefficients that are constant for each 

rasterization line, and x -сoordinate values are normalized� 
The known formulas for calculating the coefficients are as follows [8] 

 1 0 1 2 2 0 1 2 3 02 4 2 , 3 4 2 ,A u u u A u u u A u ,  (4�9) 
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where 0u , 1u  і 2u , and are the values of the texture coordinate u  at the start, 
middle, and end points of the rasterization line, respectively� The formulas 

for calculating the coefficients 1B - 3B , however, the corresponding coordi-
nate values are used instead of the v -сoordinate values� 

The use of quadratic approximation gives a fairly realistic reproduction 
of the perspective with relatively simple calculations� The disadvantage of 
formulas (4�9) is that they can be used only in the case of normalized values 
of screen coordinates� The normalization procedure requires a division op-
eration, which significantly affects the computational complexity� 

The cubic approximation [7] uses the relationship 

 

3 2
1 2 3 4

3 2
1 2 3 4

( ) ,

( ) ,

u x C x C x C x C

v x D x D x D x D
 

where С
1
-С

4
, D

1
-D

4
 are approximation coefficients that are calculated for 

each rasterization line, the x -coordinate values are also normalized� To 
calculate the approximation coefficients, you need to find the exact values 
of the texture coordinates at four anchor points: the start, end, and two in-
terior points that divide the rasterization line into three equal segments� The 
cubic approximation provides a more realistic perspective than the quadrat-
ic approximation, but the computational complexity increases significantly, 
which limits the scope of this type of approximation in real-time computer 
graphics systems� 

The bi-quadratic [8] approximation uses the equation of the form 

 

2 2
1 2 3 4 5 6

2 2
1 2 3 4 5 6

( ) ,

( ) ,

u x A x A y A xy A x A y A

v x B x B y B xy B x B y B
 

where А
1
-А

6
, В

1
-В

6
 are the approximation coefficients� 

To calculate the 12 bi-quadratic approximation coefficients, you need 
to know the exact values of a pair of texture coordinates at six points: at the 
vertices of a triangular polygon and at the midpoints of its edges� 

The bi-cubic approximation [8] uses the equation 

 

3 3 2 2 2 2
1 2 3 4 5 6 7 8 9 10

2 2 2 2 2 2
1 2 3 4 5 6 7 8 9 10

( ) ,

( ) ,

u x A x A y A x y A xy A x A y A xy A x A y A

v x B x B y B x y B xy B x B y B xy B x B y B
 

where А
1
-А

10
, В

1
-В

10
 are the approximation coefficients� 

The bi-cubic approximation requires accurate values of a pair of texture 
coordinates at 10 control points and the calculation of 20 approximation 
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coefficients� The result looks quite realistic, but the computational cost is 
very high, so this type of approximation is of limited use� 

Another approach to approximation is to split the rasterization line into 
several segments and use linear, quadratic, or cubic interpolation to calcu-
late texture coordinates within the resulting segments� In this case, you need 
to calculate the exact values of the texture coordinates at the points between 
which the interpolation is performed� 

4.5. RECURRENT DETERMINATION OF TEXTURE COORDINATES 

In paper [9], it is proposed to use the midpoint method to approximate 
the hyperbolic curve, which allows you to find not approximate, but exact 
values of texture coordinates� In this case, the value of each texture coordi-
nate is checked for compliance with the condition [9] for the values of the 
object’s screen coordinates� If the value of the texture coordinate meets the 
condition, it is considered that its valid value has been found, otherwise, 
the next value of the texture coordinate is checked for compliance� At the 
same time, instead of division operations, addition and comparison oper-
ations are used, which greatly simplifies calculations� The disadvantage of 
the method is the assumption that the texture coordinates are set to integers, 
which is only a special case of texturing� 

According to the OpenGL and DirextX specifications, texture coor-
dinates are specified in the range [0;1], i�e�, they are fractional numbers, 
which necessitates the development of a new PCT method that would take 
into account the noninteger representation of texture coordinates� 

Suppose it is needed to find the texture coordinates u  and v � Since the 
coordinates u  and v  are calculated similarly, then in the following we will 
consider only the coordinate u  with generalization of the results and on the 
coordinate v � 

When perspective-correct texturing using the midpoint method, texture 
coordinates are determined that meet the condition [9] 

 0,5 0,5
ax by c ax by c

u
gx hy i gx hy i

�  (4�10) 

Condition (4�10) is acceptable for the case of integer texture coordi-

nates� For texture coordinates from the range 0;1 , this condition will take 
the form 
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2 2

ax by c u ax by c u
u

gx hy i gx hy i
,  (4�11) 

where u  — the difference between neighboring values of a texture coor-

dinate u , which is calculated by the formula maxu
u

p
, maxu  — the max-

imum value of the texture coordinate u , p  — number of texture points 
along the axis u � 

Let , 2E x y gx hy i � Multiplying inequality (4�11) by ,E x y , 
we obtain 

 
2 ,

2

ax by c u gx hy i uE x y

ax by c u gx hy i
� 

Write the resulting inequality in the form of a system of inequalities 

 
, 2 0;

, 2 0�

uE x y ax by c u gx hy i

uE x y ax by c u gx hy i
 

After simplification, we get 

 
, 2 2 2 0;

, (2 ) (2 ) (2 ) 0�

uE x y x a ug y b uh c ui

uE x y x a ug y b uh c ui
  (4�12) 

Let’s introduce the following notation 

 , , , 2 2 2W x y u uE x y x a ug y b uh c ui , 

 , , , 2 2 2Q x y u uE x y x a ug y b uh c ui � 

Then the condition (3�4) will take the form 

 
, , 0;

, , 0�

W x y u

Q x y u
  (4�13) 

The system of inequalities (4�12) defines the conditions that the texture 
coordinate u  must meet for the given values of the screen coordinates x  
and y � If the conditions (4�13) are not met for the current coordinate value 
u , then an increment u  is added (subtracted) to it� The increment u  is 
added (subtracted) until the conditions (4�13) are satisfied� When a texture 
coordinate value u  is found that satisfies the conditions (4�13), the next 
point in the rasterization line is moved to� 
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Consider how the values ,E x y , , ,W x y u  and , ,Q x y u  will change 
when changing coordinates x  and y  by 1� 

When x  is increased by 1, 1, , 2E x y E x y g � Hence 

 1, , , , 2 2 ,W x y u W x y u gu a ug  

 1, , , , 2 2 �Q x y u Q x y z gu a ug  

If we reduce x  by 1, then 1, , 2E x y E x y g � Hence 

 1, , , , 2 2 ,W x y u W x y u gu a ug  

 1, , , , 2 2 �Q x y u Q x y z gu a ug  

With an increase of y  by 1 , 1 , 2E x y E x y h � Hence 

 , 1, , , 2 2 ,W x y u W x y u hu b uh  

 , 1, , , 2 2 �Q x y u Q x y u hu b uh  

Expressions 2a ug , 2a ug , 2b uh  and 2b uh  is 
enough to calculate once for the entire polygon� Then finding the condi-
tions (4�13) for the next point in the rasterization line involves performing 
only two multiplication operations and four addition operations� 

If the current value of the texture coordinate does not satisfy the condi-
tions (4�13), then you need to add or subtract an increment to it u � Let’s 

define how the values , ,W x y u  and , ,Q x y u  change when changing a 
texture coordinate u  by u � 

Increasing u  by u  

 
( , , ) ( , , ) ( , );

( , , ) ( , , ) ( , )�

W x y u u W x y u u E x y

Q x y u u Q x y u u E x y
  (4�14) 

Reducing u  by u  

 
, , , , , ;

, , , , , �

W x y u u W x y u u E x y

Q x y u u Q x y u u E x y
  (4�15) 

The resulting formulas allow you to find the values of the conditions 

, ,W x y u  and , ,Q x y u  for the new value of the coordinate u , by per-
forming only two multiplication and two addition operations� 

From formulas (4�14) and (4�15) it is clear that the expressions , ,W x y u  

and , ,Q x y u  increase with increasing u , and decrease with decreasing u , 
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because 0u  and , 0E x y � This allows to select the type of change of 

coordinate u � If , , 0W x y u , then it is needed to add the increment u  

to the current value of the coordinate u � If , , 0Q x y u , then the incre-
ment u  is subtracted from the current value of the coordinate u � 

The texture coordinate v  is calculated in a similar way� 
The principle of the proposed method is shown in Fig�4�9� 

 

Fig� 4�9� Additive determination of a texture coordinate 

From the example shown in Fig�4�9, it can be seen that to find the coor-

dinate u  at a point ix , it is needed to perform 3 iterations of u  incremen-

tal addition, and at a point 1ix  — 2 iterations, etc� 
In the proposed method of perspective-correct texturing, division oper-

ations are replaced by addition operations, which significantly reduces the 
amount of computation and speeds up the texturing process� 

The method allows finding the exact values of texture coordinates� Un-
like the proposed method, the classical PCT method requires rounding or 
discarding the fractional part of the texture coordinate, which leads to tex-
turing errors� 

Compared to the method in [9], the proposed method is universal, since 
it can be applied to both integer and fractional representations of texture 
coordinates� 
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4.6. USING QUADRATIC APPROXIMATION  
FOR PERSPECTIVE-CORRECT TEXTURING 

The peculiarity of the known methods of approximating perspec-
tive-correct texturing is that the internal reference points of the segments 
are placed evenly between the start and end points of the rasterization 
line (RL)� In particular, with the traditional quadratic approximation, 
the internal reference point is the midpoint of the RL, which divides the 
line into two equal parts� In this case, there is a symmetrical distribu-
tion of the absolute approximation error relative to the midpoint of the 
PL� At the same time, the relative error takes on maximum values when 
the texture coordinates are close to zero� The relative error can be re-
duced if the internal reference point is not the middle point, but a point 
offset from the middle of the RL, depending on the nature of the change 
in the texture coordinate values� If the values of the texture coordinate 
increase along the RL, then the internal anchor point should be shifted 
towards smaller coordinate values, and if they decrease, then towards 
larger values� 

Let’s derive general formulas for calculating the approximation coeffi-
cients� To do this, solve the system of equations: 

 

2
0 0 0

2

2
1 1 1

;

;

,

âí âí âí

Ax Bx C u

Ax Bx C u

Ax Bx C u

  (4�16) 

where A , B  and C  — quadratic approximation coefficients, 0x , âíx , 

1x  — screen x -coordinates at the first, inner, and end points of the PL, 

respectively, 0u , âíu , 1u  — texture u -coordinates at the first, inner, and end 
points of the PL, respectively� 

Since the traditional quadratic approximation uses normalized values of 

the screen coordinate, 0 0х  and 1 1х � Then the system (4�16) will take 
the following form 

 

0

2

1

;

;

�

âí âí âí

C u

Ax Bx C u

A B C u

  (4�17) 

Let’s find the coefficient A  from the third equation of system (4�17) and 
substitute it into the second equation� 
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 1 1 0A u C B u u B , 

 
2

1 0 0âí âí âíu u B x Bx u u � 

From the last equation, we find the coefficient B  

 
2

1 0 0

2

âí âí

âí âí

x u u u u
B

x x
� 

Hence 

 
2

1 0 01 0 0

1 0 2 2

âí âíâí âí

âí âí âí âí

x u u u ux u u u u
A u u

x x x x
� 

The formulas for calculating the coefficients , , A  B C  are as follows 

 

2
1 0 0

2 2
1 0 0

0

;

;

�

âí âí âí âí

âí âí âí âí

A x u u u u x x

B x u u u u x x

C u

 (4�18) 

Calculating coefficients A  and B  requires 2 division operations, 5 mul-
tiplication operations, and 8 addition operations� Let’s introduce the fol-
lowing notation 

 1 0âír x u u , 0 âís u u , 
2

1

âí âí

q
x x

�  (4�19) 

Let us substitute the notation (4�19) into the system (4�18)� Then we get 

 

0

;

;

�

âí

A q r s

B q r x s

C u

  (4�20) 

The calculation of the approximation coefficients using formulas (4�20) 
requires 1 division operation, 5 multiplication operations, and 5 addition 
operations� 

If the value of the internal reference point for the next rasterization line 
remains unchanged, it is obvious that the value of the coefficient q  will not 
change either, which allows to eliminate 1 division, 1 multiplication, and 1 
addition operation� 

Table 4�1 shows the formulas for calculating the coefficients A  and B  
for different values of the internal point of the rasterization line 
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Table 4�1 

Formulas for calculating the coefficients of quadratic approximation for different 
values of the internal point

Value 

âíх
Formula for calculating the 

coefficient A
Formula for calculating the 

coefficient B

0,75 1 0 0,754 1,333 5,333u u u 1 0 0,753 2,333 5,333u u u

0,7 1 0 0,73,333 1,429 4,762u u u 1 0 0,72,333 2,429 4,762u u u

0,6 1 0 0,62,5 1,667 4,167u u u 1 0 0,61,5 2,667 4,167u u u

0,5 1 0 0,52 2 4u u u 1 0 0,53 4u u u

0,4 1 0 0,41,667 2,5 4,167u u u 1 0 0,40,667 3,5 4,167u u u

0,3 1 0 0,31,4297 3,333 4,762u u u 1 0 0,30,429 4,333 4,762u u u

0,25 1 0 0,251,333 4 5,333u u u 1 0 0,250,333 5 5,333u u u

Similar formulas are used to calculate the coordinate v � 
Fig� 4�10 shows graphs of the relative error of u  texture coordinate 

approximation for a specific rasterization line (polygon: (1,1), (32,96), 
(96,128), (128,32), 32y ) at different locations of the internal anchor 
points, provided that the texture coordinate values vary from 0 to 1� The 
maximum relative error occurs when the internal anchor point splits the 

rasterization line in half, i�e� 0,5âíх � When the internal reference point 
is shifted to the left, the value of the maximum relative error decreases, and 

when the value 0,25âíх  is reduced by almost half� 
Shifting the internal anchor point to the left allows to find more accurate 

texture coordinate values in the left part of the RL due to a proportional 
increase in the error in the right part� This way, the relative error values are 
centered along the rasterization line� 

Shift the internal anchor point to lower values of the screen coordinate 
x  is performed when the value of the texture coordinate along the raster-

ization line increases, i�e� 1 0u u , and towards higher values of the screen 

coordinate x  — when 1 0u u � Table 4�2 shows the recommended values of 
the internal reference point for different values of texture coordinates at the 
start and end points of the rasterization line� 

The proposed approach reduces the relative error in determining tex-
ture coordinates by up to 2 times� The advantage of the approach is that 
the increase in accuracy is achieved not by using higher-order curves or by 
introducing additional reference points, but only by shifting the internal ref-
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erence point� The formulas for calculating the approximation coefficients 
for different values of the internal reference point are calculated once for 
the entire PL� 

 

Fig� 4�10� Graphs of relative approximation errors at different locations of the 
internal reference point 

Let’s consider another possible approach to using approximation for 
texturing� 

Traditional quadratic approximation [1, 7] uses normalized values of the 
object’s screen coordinates for perspective-correct texturing� The normal-
ization procedure involves performing a time-consuming division opera-
tion, which reduces the speed of texture overlay� 

Let’s find the formulas for calculating the quadratic approximation co-
efficients, provided that the object’s screen coordinates are not normalized� 

To determine the texture coordinate u  according to quadratic approxi-
mation, it is necessary to find the unknown coefficients А

1
–А

3. 
To find them, 

we write the system of three equations in matrix form: 

 

2
0 0 1 0

2
1 1 2 1

2
2 2 3 2

1

1

1

х х А u

х х А u

х х А u

, 

where (х
0
, х

1
, х

2
) and (u

0
, u

1
, u

2
) — values of coordinates х and и at the start, 

inner, and end points of the rectangular polygon rasterization line, respec-
tively, А

1
, А

2
 and А

3
 — quadratic approximation coefficients� 
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Table 4�2 

Recommended values for the internal reference point

The value of texture 
coordinates at the start 

and end points

Range of the difference between the 
texture coordinate values at the ends 

of the rasterization line

Value 

âíх

0 0u , 1 0;1u  – 0,25

1 0u ,
0 0;1u – 0,75

 

0 1u , 1 0,05;1u  

0 1 0;0,35u u 0,5

0 1 0,35;0,75u u 0,6

0 1 0,75;0,95u u 0,7

 

1 1u , 0 0,05;1u

1 0 0;0,35u u 0,5

1 0 0,35;0,75u u 0,4

1 0 0,75;0,95u u 0,3

0 0,5u ,
1 0,5u : 

0 1u u  

0 1u u

 
– 
–

 
0,4 
0,6

All other cases – 0,5

Values u
0
, u

1
 and u

2
 can be calculated using formula (4�9)� The coeffi-

cients А
1
, А

2
 and А

3 
will be found by Kramer’s method [3]: 

 1 2 3
1 2 3, , ,А А А  

where , 
1
, 

2
 and 

3
 — determinants of matrices, which are calculated as 

follows: 

 

2
0 0

2 2 2 2
1 1 0 1 2 1 2 0 2 0 1

2
2 2

1

1

1

х х

х х х х х х х х х х х

х х

, 

 

0 0

1 1 1 0 1 2 1 2 0 2 0 1

2 2

1

1

1

u x

u x u x x u x x u x x

u x

, 
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2
0 0

2 2 2 2
2 1 1 0 1 2 1 2 0 2 0 1

2
2 2

1

1

1

х u

х u х u u х u u х u u

х u

, 

 

2
0 0 0

2 2 2 2
3 1 1 1 0 1 2 2 1 1 2 0 0 2 2 0 1 1 0

2
2 2 2

х х u

х х u х х u х u х х u х u х х u х u

х х u

� 

Then the formulas for calculating the coefficients A
1
, A

2
, and A

3
 will look 

like this 

 1 0 1 2 1 2 0 2 0 1 ,А d u х х u х х u х х  

 2 2 2
2 0 1 2 1 2 0 2 0 1 ,А d х u u х u u х u u  

 
2 2 2

3 0 1 2 2 1 1 2 0 0 2 2 0 1 1 0 ,A d x x u x u x x u x u x x u x u  

 
2 2 2
0 1 2 1 2 0 2 0 11d x x x x x x x x x � 

The coefficients 1 3B B  are calculated in a similar way, but the values 0v ,  

1v  and 
2v  are used instead of the values 0u , 1u  and 2u � The approximation 

coefficients 1 3A A  and 1 3B B  are calculated once for each rasterization 
line� 

Thus, instead of normalizing the screen coordinate value at each point 
of the rasterization line, only one division operation is performed per raster-

ization line to find the coefficient d � 

4.7. USAGE OF SECOND-ORDER BÉZIER CURVES TO SIMPLIFY 
THE CALCULATION OF TEXTURE COORDINATES 

In computer graphics, the method of constructing Bézier curves [1] is 
widely used, which allows to form curves of any shape� For perspective-cor-
rect texturing, a function is used that can be approximated by a quadratic 
Bézier curve, the parametric representation of which is as follows 

 
2 2

0 1 21 2 1r t t p t t p t p ,  (4�21) 

where 0 0 0,p x u , 1 1 1,p x u , 2 2 2,p x u  — the anchor points, and 0,1t � 
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In this case, the Bezier curve will be inscribed in a triangle 0 1 2p p p  
(Fig� 4�11)� 

0p

1p
2p

)t(u),t(x)t(r

x

u

Fig� 4�11� Construction of a Bezier curve using three reference points 

Since ,r t x t u t , then to build a Bézier curve, it is needed to 
solve two equations — relative to the screen x  and texture u  coordinates� 

 
2 2

0 1 21 2 1x t t x t t x t x ,  (4�22) 

 
2 2

0 1 11 2 1u t t u t t u t u �  (4�23) 

Equation (4�21) has a number of properties [1]: 

1) 00r p , 21r p , that is, the first and last anchor points of the 
Bezier curve coincide with the corresponding points of the triangle in which 
it is inscribed� In order to find them, it is needed to find the exact values of 

the 0u  and 2u  texture coordinates for the first 0x  and last 2x  points of the 
rasterization line, respectively� 

2) The tangent vectors at the ends of the Bezier curve coincide with the 
first and second sides of the triangle in which it is inscribed� That is, the 

point of intersection of these tangents will be the anchor point 1p � 

Let’s find the formulas for calculating the anchor point 1p � 
The equation of the tangent for our case is 

 0 0 0u f x f x x x ,  (4�24) 

where 0f x  — the derivative of a function f x  at a point 0x � 

To find the intersection point 1p , equate the equations of the tangents at 

points 0x  and 2x  and find the expression for the coordinate 1x  
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 0 0 1 0 2 2 1 2 �f x f x x x f x f x x x  

 0 2 0 0 2 2

1

2 0

�
f x f x f x x f x x

x
f x f x

  (4�25) 

The value of the texture coordinate 1u  can be found by substituting the 

value 1x  into equation (4�24) 

 1 0 0 1 0u f x f x x x �  (4�26) 

In the case of perspective-correct texturing 

 
ax by c

f x
gx hy i

, тоді 0 0f x u  і 2 2f x u �  (4�27) 

The expression for finding the derivative f x  is 

 
2 2

( )
a hy i g by c A

f x
gx hy i gx B

,  (4�28) 

where coefficients A aB g by c , B hy i  are constants for the 
rasterization line, since the screen coordinate y  is a constant value� 

Given expressions (4�27), (4�28), formulas (4�25) and (4�26) can be writ-
ten as follows 

 

0 2 0 22 2

0 2

1

2 2

2 0

�

A A
u u x x

gx B gx B
x

A A

gx B gx B

 

After simplification, we get the following 

 

2 2 2 2

0 2 0 2 0 2 2 0

1 2 2

0 2

u u gx B gx B A x gx B x gx B
x

A gx B gx B
� 

Let’s introduce the notation 
2

0 0C gx B  і 
2

2 2C gx B � Hence 

 0 2 0 2 0 2 2 0

1

0 2

u u C C A x C x C
x

A C C
,  (4�29) 

 1 0 1 0

0

A
u u x x

C
�  (4�30) 
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When changing the coordinate y  by 1: 

 
1 1 ( 1

,

A y a h y i g b y c

a hy i ah g by c gb A y D
 

where D ah gb  — a constant for the entire polygon being textured� 

 1 1B y h y i hy i h B y h � 

Thus, the calculation of the coefficients A  and B  for the next rasteriza-
tion line requires only two addition operations� 

Formula (4�22) contains 6 multiplication operations, 3 addition opera-
tions, and one shift operation� Let’s derive recurrent formulas for calculat-
ing the screen coordinate x , which do not contain multiplication opera-
tions� To do this, we will use the method of finite differences [1, 3]� 

 

2 2

0 1 2

2 2
0 1 2

1 2 1

1 2 1 ,

x x t dt x t t dt x t dt t dt x t dt x

t x t t x t x
 

where dt  — increment of parameter t  along the rasterization line� 
Opening the brackets, we get 

 2
0 1 2 1 0 0 1 22 2 2 2x tdt x x x dt x x dt x x x �  (4�31) 

Let’s introduce the notation 

 0 1 22xS x x x  і 2
1 0 1 02 2x x xR dt x x dt S dt x x dtS � 

The coefficients xS  and xR  are calculated once for the RL� The recur-
rent formula for calculating the screen coordinate x  along the RL will be 

 2 x xx t dt x t tdtS R �  (4�32) 

Formula (4�32) requires two addition operations, two multiplication op-
erations, and one shift operation� To remove the multiplication operations, 

we apply the finite difference method for x  one more time so that the 

equality x x xt dt t d � 
Then we get 

 2 2
0 1 22 2 2x x x xd t dt t dt x x x dt S �  (4�33) 

The expression 22 xdt S  does not depend on the value of the parameter t ,  
so it is a constant for the entire rasterization string� 
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Taking into account formula (4�33), formula (4�30) can be written as 
follows 

 xx t dt x t t dt , де x x xt dt t d �  (4�34) 

Similar formulas apply to the coordinate u � 
The proposed recurrent formulas (4�34) allow to find the coordinate by 

performing only two addition operations� 
In formulas (4�21) and (4�22), x  and u  depend on the parameter t , 

and the texturing task involves calculating the texture coordinate u  for a 
specific integer value of the screen coordinate x � Therefore, it is necessary 
to express the parameter t  in terms of the screen coordinate x � 

Let’s consider two approaches to solving this problem� 
The first approach involves gradually increasing the value of the param-

eter t  until it provides an integer value of the screen coordinate x , which 
is larger than the previous value of the found screen coordinate by 1, that is 

1 1i ix x , where 0, 1i m  is the ordinal number of the current point 
in the rasterization line, and m  is the number of points in the rasterization 
line� 

Using a sufficiently small step of parameter t  does not always guarantee 
an integer value of the screen coordinate x � Therefore, it is advisable to 
make the assumption that 

 1 11 1i i i i i ix t x t x t ,  (4�35) 

where  — permissible deviation from the integer value� 

If 1 1i i it t t , then 

 1 1i i it t t �  (4�36) 

Since for the point 0x  the value of the parameter 0 0t , then 1 1t t � 

Let’s write down the formula for the calculation 1t  

 1
1

k

kort dt t , 

where k  — the number of iterations of adding a step, kort – the corrective 
value� 

The increment operation of step dt  is performed until the following 
condition is satisfied 

 1 1 0 1x t x � 
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In the case, when 1 1 0 1 ,x t x  it is necessary to reduce the value 

1t  by a certain amount kort , that is, adjust the value 1t � 

The value kort  is calculated as follows� First 
2

kor

dt
t � If, after adjusting 

the value 1t  1 1 0 1x t x , then 
2 4

kor

dt dt
t � The value kort  should 

be increased until 1 1 0 1x t x � In this case, the value 
2n

dt
 is added, 

when n  — sequence number of the adjustment iteration� 

If during the adjustment the value 1 1x t  becomes less than the low-

er bound of condition (4�35), i�e� 1 1 0 1x t x , then the sign for the 

current adjustment term changes to minus� The value kort  calculation pro-

cedure is completed when condition (4�35) is met for the current value 1t � 

Thus, the formula for the calculation kort  is written as follows 

 ���
2 4 2

kor n

dt dt dt
t �  (4�37) 

To calculate the incremental value 2t , we use the incremental value 

1t  and find only the corresponding value kort � 
The general formula for calculating the increase 

1it  can be written as 
follows 

 1i i kort t t �  (4�38) 

The calculation according to formulas (4�36)-(4�38) is simple from a 
hardware point of view, since only addition operations are necessary, and 
division operations can be realized by addition and mounting shift� 

Computer simulations have shown that when applying the proposed ap-
proach to calculating the parameter t  values, the maximum relative error does 
not exceed 0�7 %, which is 7 times less than when using the traditional quadrat-
ic approximation� Unlike traditional quadratic approximation, the proposed 
method does not require normalization of screen coordinates, which reduces 
computational complexity and, as a result, speeds up the texturing process� 

The second approach to determining a parameter t  through a screen 
coordinate x  involves establishing a quadratic relationship 

 2
1 2 3t A x A x A , 

where 
1 2 3, ,A A A  — quadratic approximation coefficients� 

The calculation of the approximation coefficients 1 2 3, ,A A A  can be per-

formed using formulas presented in the previous section� Given that 0 0t , 

and 2 1t , that formulas can be simplified as follows 
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 1 1 2 0 0 1 ,A d t x x x x 2 2 2 2
2 1 0 2 0 1 ,A d t x x x x  

 2 2 2
3 0 1 2 1 0 1 2 1 ,A d x x x t x x x t  

 
2 2 2
0 1 2 1 2 0 2 0 11d x x x x x x x x x � 

The results of computer modeling have shown that the maximum rela-
tive error when applying the quadratic dependence of the parameter t  on 
the screen coordinate х  does not exceed 1�7 %, which is almost 3 times less 
than the traditional quadratic approximation� 

The proposed methods for calculating texture coordinates using the sec-
ond-order Bezier curve, unlike the traditional quadratic approximation, do 
not require normalization of screen coordinates� This increases the accu-
racy of the approximation with a slight complication of the computational 
process� 

4.8. NON-ORTHOGONAL RASTERIZATION METHODS 

It is possible to reduce the number of division operations when texturing 
by rasterizing the object in the world coordinate system, provided that the 
rasterization lines are placed at a fixed distance from the observer� Let’s find 
the slope coefficient of a line in the screen coordinate system, which cor-
responds to a line segment in the world coordinate system with a constant 
value of the coordinate z for the line (Fig�4�12)� Let a triangle be given in 
the world coordinate system� It uniquely defines a plane whose equation is 
as follows 

 w w wAX BY CZ D ,  (4�39) 

where , ,A B C  are the coefficients determined by the coordinates of the 
vertices of the triangle� 

From the last equation we find that 

 w w
w

A X B Y D
Z

C
�  (4�40) 

The following relations exist between the screen and world coordinates 

, �w w
v v

w w

X Y
X Y

Z Z
 We write the last equations in the form 

 , �w v w w v wX X Z Y Y Z  
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Fig� 4�12� Rasterization lines in the world and screen coordinate systems 

Let’s look for the angle of the line whose equation is v vY k X h � 

With this in mind, we write that ( )w v w v wY Y Z k X h Z � 

Substituting into equation (4�40) and the value of ,w wX Y , we obtain 

 ( )v w v w wA X Z B k X b Z C Z D � 

From the last equation we find that 

 
( )

w

v

D
Z

X A B k B h C
�  (4�41) 

Provided that for a triangle rasterization line in the on-screen coordinate 

system wZ const , then for any j  holds 

 
( ) ( ) ( )v v

D D

X A B k B h C X j A B k B h C
� 

The last equation has a unique solution /k A B � Since j  and vX  
were chosen arbitrarily, it can be stated that the slope of the scanning raster-
ization line does not change for the entire triangle considered in the original 

coordinate system� The value of the coordinate wZ  for a given rasterization 
line is easy to find by substituting the obtained value k  into equation (4�41)� 

 / ( )wZ D B h C � 
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The following relationship exists between the coordinates of the texture 
and screen spaces [1, 3]: 

 ,v v v v

v v v v

a X b Y c d X e Y f
u v

A X B Y C A X B Y C
� 

Denote the denominator of the above expressions by T , and 1 /T ,  
then 

 ( ) , ( )v v v vu a X b Y c v d X e Y f � 

The denominator for determining the texture coordinates ,u v  is con-
stant for the rasterization row, while in the conventional approach it is cal-
culated for each point of the row� In the following, we will consider only 
one of the coordinates, for example, u  since the expressions for their cal-

culation are similar� Let’s express vY  through k  and substitute it into the 
previous expression� We get 

 ( ( ) ) [ ( ) ( )] �v v vu a X b k X h c X a b k b h c  

For the starting point of the rasterization line 0vX � With this in mind 

0 ( )�u b B c  Consider how u  changes when coordinate vX  changes 
by one 

 1 [( 1) ( ) ( )] ( )�i v iu X a b k b h c u a b k  

The resulting ratio can be easily calculated in hardware, provided that 
 is known� 
The non-orthogonal direction of rasterization of the area bounded by the 

polygon allows to reduce the computational complexity of the process of apply-
ing textures to the surface of a three-dimensional graphic object� For a triangle 
containing T internal points, (T-q) division operations are performed, where q 
is the number of horizontal and vertical rasterization lines of the triangle� 

The issue of triangle rasterization is important, since the direction of 
rasterization, which is not orthogonal to the coordinate axes, will inevitably 
lead to artifacts — the presence of “gaps” and duplicate points due to the 
offset of the starting points of the rasterization lines� This can be avoided 
if the leading edge of the triangle is parallel to the ordinate axis, but this 
requires a special surface triangulation and does not meet the requirements 
of graphic standards� Artifacts can be eliminated by adaptive phasing of the 
sequence of step increments of the scan line, which involves setting different 
initial values of the evaluation function during interpolation, which signifi-
cantly complicates the linear interpolator� 
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The easiest way to solve the problem is to rasterize not the triangle, but 
the rectangle into which it is virtually inscribed (Fig� 4�13, a)� You can de-
termine the parameters of such a rectangle by comparing the co-ordinates 
of the vertices of the triangle (the left and rightmost vertices of the triangle 
represent the abscissa of the left and right sides of the rectangle, and the 
bottom one represents the ordinates of the bottom side of the rectangle)� 
The parameter r  can be easily found by substituting the value of the ab-
scissa of the top vertex of the triangle into the equation of the line used 
for rasterization� It is clear that the ordinate of the upper left vertex of the 
rectangle is equal to the sum of r  and the ordinate of the upper vertex of 
the triangle� 

 

Fig� 4�13� Rasterizing an area bounded by a triangle 

When rasterizing a rectangle, provided that the rasterization direction is 
not orthogonal, there will be no “cutting through” or “sticking” artifacts, 
since the step increments of neighboring lines will be identical along the 
ordinate directions� 

Rasterization of a rectangle is performed to determine the coordinates 
of the left and right points of the triangle edges that intersect the rasteri-
zation line without calculations that require “long” operations� When the 
right edge of the triangle is reached, the transition to a new rasterization line 
of the rectangle is made, which is located one ordinal level lower (Fig�4�13, 



161

a), that is, the area of the triangle behind its right edge is not rasterized 
(Fig� 4�13, b)� Determining the coordinates of the left and right edges of a 
triangle is achieved by comparing the foreground color of the triangle with a 
reference� In this case, one can, for example, use the principle of the parity 
criterion [4], according to which the number of intersections of a polygon 
is an even number� To improve performance, it is possible to rasterize the 
areas that have the background color with a pulse sequence of increased 
frequency� Direct texturing is performed at the clock frequency at which the 
video memory operates� 

With anisotropic filtering [5–7], which significantly increases the real-
ism of reproducing graphic scenes, the color of a pixel is determined by 
several textures� The shape of the light spot changes with the position of 
the polygon relative to the observer’s point� The higher the level of aniso-
tropic filtering, the more the performance of the graphic scene generation 
decreases� The high computational complexity of texturing using anisotro-
pic filtering limits its widespread use in image formation, although modern 
graphics cards include such functions as basic ones� 

With anisotropic filtering, the projection of a pixel onto the model sur-
face is not seen as a circle, but as an elongated ellipse (Fig� 4�14)� In order 
to correctly calculate the color of a pixel, it is necessary to take into account 
the colors of all texture samples that fall into the ellipse� This is a rather 
complicated procedure for generating images in real time, so a simplifica-
tion is used — replacing the ellipse with a parallelogram (Fig� 4�15) or a 
rectangle that bounds it� 

 

Fig� 4�14� Determination of the trace in anisotropic filtration 

To calculate the principal axes of the ellipse, the functional determinant, 
the Jacobian, is calculated [3]: 
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2

2 ( ) ( )
�

( ) ( )

u v

aBY aC AbY Ac bAX bC BaX Bcx y
j

v v dBY dC AeY Af eAX eC BdX Bf

x y

Y aB Ab aC Ac X bA Ba bC Bc

Y dB Ae dC Af X eA Bd eC Bf

 

 

Fig� 4�15� Pixel trace in the form of a parallelogram with anisotropic filtering 

The parameter  is constant for the rasterization line� Unknown pa-

rameters 1 2,P P  can be determined by the formula 

 
2

1

(( 1), ) ( , ), (( 1), ) ( , ),

( , ( 1)) ( , ), ( ( 1)) ( , )�

P u x y u x y v x y v x y

P u x y u x y u x y v x y
 

1 2,P P  can be calculated through the Jacobian, which defines the trans-
formation from one coordinate system to another (in this case, from the 

coordinate system OXY  to the coordinate system OVU )� 

1 2,P P  can be found through the derivatives in the directions (1, 0) and 
(0, 1). 

 1 2

1 ( ) 0 ( )
, �

0 ( ) 1 ( )

Y aB Ab aC Ac X bA Ba bC Bc
P J P J

Y dB Ae dC Af X eA Bd eC Bf
 

In the case when z const , the sides 1 2,z zP P  of the parallelogram are 
found by derivatives in the directions (0, 1), (1, k), respectively� 

 2
1 1 2

( )
(0, 1)     (1, )

( )
z z

aB Ab
P J P P J k

dB Ae
 

The last expression shows that 2zP  is constant for the rasterization line, 
since 
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 2

2 2
2

1 1 1

( ) ( )( ( ) )v v
v v

AAX BY C Bh CAX B X h C
B

� 

In most cases, anisotropic filtering uses a rectangular image window to 
rasterize a texture surface� In this case, the issue of fast rasterization of such 
a window, which is generally rotated relative to the coordinate axes, is im-
portant� 

The authors have developed a method for forming a window at an arbi-
trary angle to the coordinate axes� 

The vectors AB and AC (Fig� 4�16) have the same inclination angles 
with respect to the abscissa and ordinate axes� Thus, their component step 
increments relative to the given coordinate axes coincide and differ only 
in signs� Thus, when forming the output vector AB by memorizing its step 
increments, it is possible to implement the AC path� To do this, when form-
ing the i-th line in the direction of AB, the type of the i-th step increment 
is memorized and formed after the completion of the development of the 
given vector in another orthogonal direction� 

Fig� 4�16� Location of the window relative to the axes coordinates 

To rasterize a rectangular image window, a loop traversal of the rectangu-
lar image window points is performed� During the loop traversal, the image 
points located in the first line AB of the image window are read (Fig� 4�17), 
after which a function of transition from point B to point C is formed for 
one discrete� After performing these actions, the direction of the traversal 
is reversed, that is, the traversal is performed along the SD vector, the signs 
of which are opposite to the AB vector� A similar traversal procedure takes 
place for all subsequent lines of the window� 
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Fig� 4�17� Daisy-chain bypass of window rows 

Suppose you need to rasterize a rectangular window ABQP (Fig� 4�18), 
the internal points of which define a certain texture image� To do this, per-
form the following steps� 

 

Fig� 4�18� Determining the coordinal displacements for the sides of the window 
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Determine the increments Х, У of the base vector AB� Using the linear 
interpolation function, determine the coordinates of the image points in the 
direction of the base vector AB� When you reach point B, which corresponds 
to the end point of the vector AB, form a signal of transition from point B 
to point C. To do this, when forming a step trajectory of the base vector AB, 
the value of the step increment corresponding to point 1 of the AB vector is 
memorized, and when point B is reached, a step increment is formed with 
the opposite sign along the abscissa axis and the orthogonal components are 
swapped� This will ensure the transition to point C, which is located one dis-
crete step away from point B� Then change the direction of the base vector to 
the opposite and repeat the above steps� Thus, when forming the CD vector, 
the step increment is memorized, which is formed in the second interpola-
tion step� The recorded step increment is used at point D to move to point 
E� Similarly, when forming the third vector, the value of the step increment 
in the third cycle is memorized, which is used at point F to move to point K� 

In general, when forming the i-th line, the type of the i-th step incre-
ment is memorized and formed relative to the ordinate axis after the spec-
ified vector is finished� The described actions are repeated until the image 
window is rotated� 

During anisotropic filtering, the textures obtained during the rasteriza-
tion of the image window are averaged according to the selected filtering 
method� 

The proposed method of rasterizing a rectangular window formed at a 
certain angle to the coordinate axes has a simple hardware implementation 
and involves the use of not two, but only one linear interpolator, which al-
lows reducing hardware costs by up to two times� 

4.9. DETERMINING THE DIRECTION OF RASTERIZATION  
TO SPEED UP PERSPECTIVE-CORRECT TEXTURING 

In texture mapping tasks, polygon points are traditionally processed 
along horizontal rasterization lines� Let’s prove that for polygons whose two 
opposite sides are parallel to one of the screen coordinate axes, one of the 
texture coordinates remains constant along the rasterization line� Consider 
two cases of this dependence� 

Statement 4.1. For polygons with two opposite sides parallel to the X-ax-
is, the texture coordinate v  remains constant for the horizontal rasteriza-
tion line when perspective-correct texturing is performed� 
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Proof. Let’s assume a polygon with two opposite sides parallel to the X-axis 
and a sample texture to be applied to this polygon (Fig� 4�19)� The coordinates 
of the vertices of the polygon are expressed in terms of x  and y ; the coordi-
nates of the vertices of the texture are expressed in terms u  of and v � 

 

Fig� 4�19� A polygon with opposite sides parallel to the x-axis and a sample texture 

According to formulas (3�1), the texture coordinate v  will remain con-
stant for the horizontal rasterization line in the case when the coefficients 
d  and g  take zero values� 

The coefficients d  and g  are calculated using the formulas [7]: 

 d E I F H , g D H E G ,  (4�42) 

 1 1 2

1 1 2

x x x x
H

y y y y
, 4 1 3E y y Hy ,  (4�43) 

 1 2 3 4y y y y y , 
1 2 3y y y , 

2 4 3y y y �  (4�44) 

From Fig� 4�19 it is obvious that 1 4y y  and 2 3y y � Then, according 
to the formulas (4�44) 

 10, 0y y � 

The obtained values allow to find the solution to the formulas (4�43): 

 
1

0,
0

0�

y
H

y
 and 

4 1

0,
0

0�

H
E

y y
�  (4�45) 

Substituting the values of (4�45) into formulas (4�42), we obtain 

 0, 0�d g   (4�46) 

Considering equation (4�46), the coordinates v  and 1v  are calculated 
as follows 

 
ey f

v
hy i

 , 1
1

1

ey f
v

hy i
�  (4�47) 
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The system of equations (4�47) shows that for a polygon with two oppo-
site sides parallel to the X-axis, the texture coordinate v  does not depend 
on the value of the polygon’s screen coordinate x , but only on the value of 
the screen coordinate y � That is, the texture coordinate v  for each hori-
zontal rasterization line is calculated once and used for the entire RL� 

Then the formula for determining the coordinate u  will be as follows 

 u u

ax by c
u ax A B

hy i
, 

where uA by c , 
1

uB
hy i

 — are the constants for the horizontal RL� 

Statement 4.2. For polygons whose two opposite sides are parallel to the 
Y-axis, the texture coordinate u  remains constant for a vertical rasteriza-
tion line when perspective-correct texturing is performed� 

Proof. Let’s take a polygon with two opposite sides parallel to the Y-axis 
and a sample texture that will be applied to this polygon (Fig� 4�20)� 

 

Fig� 4�20� A polygon with opposite sides parallel to the Y axis and a sample texture 

Similarly to statement 4�1, we can prove that the coefficients b  and h  
take on zero values, and the texture coordinate u  remains constant for each 
vertical rasterization line� 

The formula for determining the coordinate v  is as follows 

 v v

dx ey f
v ey A B

gx i
, 

where vA dx f , 
1

vB
gx i

 — are constants for the vertical RL� 

Polygons that have two opposite sides parallel to the X or Y axis are of-
ten found in software applications for visualizing room interiors or building 
exteriors, as well as in computer games where the main action takes place 
indoors� In particular, such elements of decor and furnishings as carpets, 
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paintings, mirrors, doors, windows, and furniture are also described by such 
polygons� 

A special case of perspective-correct texturing is affine texturing [1, 4], 
which occurs when the object to be textured is parallel to the projection 

plane, i�e�, the screen� For affine texturing 0g h , 1i � Then the texture 
coordinates u  and v  are defined as follows 

 u ax by c  and v dx ey f �  (4�48) 

Formulas (4�48) do not contain division operations, which simplifies the 
texturing process� The constancy property of texture coordinates can also be 
applied to affine texturing, which will eliminate redundant operations when 
finding texture coordinates for cases where two opposite sides of a polygon 
are parallel to one of the coordinate axes� 

If an object subject to affine texturing has two opposite sides parallel to 

the X-axis, the coefficient 0d  and texture coordinate v  do not depend 
on the value of the screen coordinate x , but are defined as v ey f , that 
is, for each horizontal rasterization line, the value v  is calculated once and 
used along the entire line� 

Similarly, the texture coordinate u  is calculated using the formula 
u ax c  if the object has two opposite sides parallel to the Y axis� In other 
words, the value u  is calculated once for each vertical RL� 

The application of the proven properties to perspective-correct and af-
fine texturing can significantly reduce the computational complexity of cal-
culating texture coordinates without compromising the quality of texturing� 

You can choose a particular direction of rasterization by checking the 
values of the coefficients in the Heckbert formula� If none of the proven 
properties can be applied, it is suggested to perform texturing along some 

non-orthogonal rasterization line (NRL)� The denominator gx hy i  in 
formulas (4�8) is determined by the z-coordinate� Provided that in the ob-
ject coordinate system we draw a plane parallel to the z-axis through the 
selected surface point, then, in general, we will get a RL, which in the screen 
system will correspond to a line with a non-orthogonal direction relative to 
the screen coordinate system� It is clear that in this case, the denominator 
in formulas (4�8) will have a constant value for the entire RL� Therefore, the 

task is to find a RL for which the expression gx hy i  will have a constant 
value� 

Suppose that the coordinate x  is increased by 1, then the coordinate y  
for the corresponding NRL will change by a certain value y � Let’s find the 
value of the increment y , given that for each point of the NRL the value 
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of the expression gx hy i  is a constant� Then, for two adjacent points of 
the NRL, we can write 

 1gx hy i g x h y y i gx hy i g h y � 

From the last equation we find y  

 y g h �  (4�49) 

As can be seen from formula (4�49), the value of the increment y  does not 
depend on the values of the coordinates x  and y , but only on the coefficients 
g  and h  of the polygon being textured� This indicates that the increment y  

is constant for the entire polygon and it is enough to calculate it once� 
Let’s write down the general formula for calculating the y-coordinate 

for the NRL 

 i p i py y y x x ,  (4�50) 

where ,p px y  — coordinates of the starting point of the NRL that belongs 
to the polygon� 

In the recurrent form, the coordinate y  for the NRL can be found by 
the formula 

 1i iy y y �  (4�51) 

Formula (4�51) requires only one addition operation, which leads to its 
simple hardware implementation� 

Taking into account the discrete nature of the RL formation (Fig� 4�21), 
the values of the coordinate y  must be integer, so we rewrite formula (4�50) 
as follows 

 i p i py y y x x ,  (4�52) 

If you start counting NRL from the first point belonging to the polygon, 
you may encounter cutoff points between neighboring RLs, which will lead 
to artifacts� According to the property that cutoff points will not occur if the 
neighboring RLs are shifted relative to each other by one horizontal or one 
vertical step� This can be easily achieved by assuming that the initial points 

of all NRLs belong to the Y-axis� Let denote them by 0 0,x y , and for all 

NRLs 0 0x , and the values 0y  differ by 1� Then the formula (4�52) will 
take the following form 

 
i o iy y y x � 
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Fig� 4�21� Discretization of the NRL 

The value 0y  can be found through the coordinate values of the point 

,p px y
 

 o p py y y x � 

Consider the calculation of texture coordinates along the NRL� 

Introduce the notation 
1

p p

k
gx hy i

� 

Then the texture coordinates u  and v  along the NRL will be calculated 
as follows 

 , , , �i i i i i iu x y ax by c k v x y dx ey f k  

Taking into account the discrete nature of the formation of rasterization 

lines, the coefficient k  must be adjusted� 

To adjust the value k , we find the first derivative k y  of the coordinate 
y , then the formula for adjustment k  will be as follows 

 i ikor k r k y ,  (4�53) 

where i i ir y x y x  — is the vertical distance (Fig� 4�21) between 

the discretized and undiscretized NRL for the current point, and k y  — 

is a derivative that characterizes the change in the value k  depending on the 
change in the value of y� 

 2

2

dk h
k y k h

dy gx hy i
�  (4�54) 

Taking into account expression (4�54), formula (4�53) can be rewritten 
as follows 
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2

i ikor k r k h � 

The expression 2k h  is a constant value for the NRL, so it is enough to 
calculate it once� 

Thus, the proposed method of perspective-correct texturing along the 
NRL allows to remove division operations from the procedure for calcu-
lating texture coordinates� The number of division operations depends on 
the number of NRLs, since for each rasterization line it is necessary to find 
the coefficient k � To find the increment y , it is needed to perform only 
one division operation by polygon� The total number of polygon division 

operations is 1q , where q  is the number of NRLs� Calculating a pair 
of texture coordinates directly requires 8 multiplication operations and 7 
addition operations� 

4.10. CONCLUSIONS 

The theoretical foundations of correct color reproduction in image for-
mation have been developed, which has increased the realism of graphic 
scenes� 

1� For the first time, methods of correct color reproduction when shad-
ing three-dimensional graphic objects based on linear interpolation of color 
component intensities, linear and spherical-angular interpolation of vectors 
and taking into account perspective projection are proposed, which allows 
to increase the realism of the formation of graphic scenes by establishing the 
color matching of surface points in the object and screen coordinate systems� 

2� The method of Barenbrug perspective-correct texturing has been im-
proved, in which, unlike the existing one, new formulas for calculating tex-
ture coordinates have been proposed� This made it possible to expand the 
scope of the method by both integer and fractional representation of texture 
coordinates and, as a result, to meet the requirements of the OpenGL and 
DirectX graphics standards� 

3� It is proposed to use quadratic approximation for perspective-correct 
texturing without normalizing the values of screen coordinates and non-bi-
nary division of the rasterization line into segments� This made it possible 
to reduce the time for calculating the texture coordinates and reduce the 
relative error of their determination by up to two times� 

4� A method for improving the performance of perspective-correct tex-
turing is proposed, in which new recurrence relations are used for the first 
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time to determine the texture coordinates of a streaming point in a rasteri-
zation line, which made it possible to exclude division operations from the 
texturing cycle and increase performance by simplifying the computational 
process� By using the second-order Bezier curve for approximation instead 
of quadratic interpolation, the accuracy of texture coordinates determina-
tion was improved� 

5� An adaptive approach to perspective-correct texturing based on the 
analysis of coefficients in the Heckbert formula is proposed, which allows to 
choose the optimal orientation of the rasterization line, which will increase 
the performance of calculating texture coordinates by removing redundant 
division operations without compromising the accuracy of determining tex-
ture coordinates� 

6� A method for improving the performance of perspective-correct tex-
ture application by using a non-orthogonal rasterization direction of a poly-
gon-bounded area is proposed� Rasterization of an object in the world coor-
dinate system is carried out under the condition that the rasterization lines 
are displaced at a fixed distance from the observer� For a triangle containing 
T internal points, (T-q) division operations are performed, where q is the 
number of horizontal rasterization lines of the triangle� 

7� A method for rasterizing a rectangular window placed at an arbitrary 
angle to the coordinate axes is developed, the peculiarity of which is that 
during the formation of the current rasterization line of the window, the step 
movement is remembered, which is used to move to the next rasterization 
line� This allows you to simplify hardware implementation by using one lin-
ear interpolator instead of two� 

8� A method for increasing the performance of perspective-correct tex-
turing for software components of graphic systems by means of non-or-
thogonal rasterization is proposed, which allows to reduce the number of 
division operations� The number of division operations per polygon is only 

1q , where q  is the number of non-orthogonal rasterization lines� 
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