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INTRODUCTION 

 
Higher mathematics for non-mathematical specialties in higher education institutions 

contains five mathematical components with different level of detail - linear algebra, 
mathematical analysis, probability theory, functions of a complex variable and vector algebra. 
But this is not enough for the effective learning of some special subjects in the field of 
information technologies, and therefore the curricula of some of these specialties contain 
other mathematical components, among which an important role is played by the 
mathematical component called “Functional analysis” and which, in fact, is the “second floor” 
over the “Mathematical Analysis” component. 

It is known from mathematical analysis that a function is a law according to which one 
numerical set corresponds to another numerical set. 

Graphically, this can be displayed as shown in fig. B.1. 
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Figure B.1 – Graphical interpretation of the term function 
 

Conventionally, the function is most often written as follows 

 ( ) YyXxxfy ∈∈= ,, ,  (1) 
or  
 ( ) YyXxxyy ∈∈= ,, ,,  (2) 

where  ∈ –is the symbol of the element belonging to the set. 
If the function f assigns only one number Yy∈  to each number Xx∈ , then, as is 

known from mathematical analysis, such a function is called a single-valued, and if the 
function assigns two or more numbers to each number, then such function is called a multi-
valued. 

A function can be specified in the form of a table, a graph, or one or more formulas. 
A function the graph of which has no discontinuities belongs to the continuous class, 

and a continuous function the graph of which does not contain breaks and therefore has a 
continuous first derivative belongs to the smooth class. 

A continuous function whose graph has breaks, and therefore its derivative - the breaks 
of the 1st type, belongs to the class of piecewise smooth. 

From the same subject of  “Mathematical analysis” it is known that a functional is a law 
according to which a set of functions is matched to a set of numbers. 

Graphically, it looks as shown in fig. B.2. 
 
 
 
 
 
 
 

Figure B.2 – Graphical interpretation of the concept of functional 
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Conventionally, the functional is most often written as follows 

 ( )( ) ( ) ( ) JJXYxyXxxxyJJ yy ∈∈∈= ,,,, .  (3) 

Examples of functional can be definite integrals: 

 ( )∫=
b

a
y dxxyJ   (4) 

or 

 ( )∫=
b

a

f
y dxyxfJ , ,  (5) 

or 

 ( )∫ ′=
b

a

F
y dxyyxFJ ,, ,  (6) 

in which ( )yxf ,  – is a mathematical expression that is a construction from an independent 
variable x  and its function ( )xy , and ( )yyxF ′,,  – is a mathematical expression that is a 
construction from an independent variable x , its function ( )xy , and the first derivative 
( )xy′  of this function; at the same time, the segment  [ ]ba,  is the domain of the function 
( )xy , i.e. [ ]bax ,∈ . 

So the function sets the law according to which each element from one numerical set is 
matched with some element from another or the same numerical set, and the functional sets 
the law according to which each element from the set of functions is matched with some 
element from the set of numbers. 

Then, there is a question: “Is it not possible to find a law according to which each 
element from a set of functions is matched by some element from another or the same set of 
functions?” 

The answer to this question is positive, and the mathematical concept that characterizes 
such a law is called an operator in mathematics. 

For example, between a set of continuous functions on a segment [ ],a b  and a set of 

derivatives of these functions ( ) [ ], ,f t t a b∈  there is a one-to-one correspondence, which is 

given by the differentiation operator dD
dt

= , for example, the function 

 2ty =   (7) 

corresponds to the derivative 

 ,2t
dt
dy

=  (8) 

which is also a function of the same independent variable. 
Analyzing the program of the educational subject “Mathematical analysis”, it is easy to 

realise that this mathematical discipline is dedicated to the study of the properties of functions 
and operations with them, the main of which are differentiation and integration. And it does 
not pay attention at all to the study of the properties of functional and operators as 
independent mathematical objects. Therefore, a separate mathematical component called 
“Functional analysis” is dedicated to the study of these mathematical objects, which is studied 
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by students of all mathematical specialties at universities and which is also included in the list 
of mandatory mathematical disciplines for students and postgraduates of some IT specialties. 

The mathematical discipline “Functional analysis”, which is studied by students of 
mathematical specialties at universities, is a set of concepts and theorems that combine these 
concepts into a single mathematical structure, and therefore it contains 90 percent of the 
material dedicated to the formulation and proof of these theorems . At the same time, it is 
more important for IT students to be able to use this material in practical applications. That is 
why we built our study guide using material dedicated mainly to the presentation of the main 
concepts and final results obtained in the theory of functional analysis and their application to 
the solution of the applied problems that IT specialists face with. The program material of the 
subject is presented in six chapters, the first of which is dedicated to sets, metric spaces and 
their characteristics; the second – theories of measure and integrals of Riemann, Lebesgue and 
Stieltjes; the third – to functional and methods of finding their unconditional extrema; the 
fourth – methods of finding conditional extrema of functional; the fifth – theory and applied 
aspects of the use of operators; the sixth – characteristics and recommendations for the 
application of several special operators, such as direct and inverse Laplace operators and 
autoregressive operators, which are widely used in system analysis and applied information 
technologies. 

In conclusion to this brief introduction to functional analysis it is necessary to note that  
in the English-language version of the textbook the authors used all the references listed in the 
bibliography, but without specification of the source, which is typical of monographs and 
scientific papers. And the material which is taken from the Ukrainian-language manuals, 
written by the authors themselves about the basics of functional analysis and some specific 
subjects in which the concepts of functional analysis are used, which we use in this textbook 
to demonstrate the solution of specific applied problems, we present without quotation marks 
and references. 

The differences between this textbook and other study guides on functional analysis is, 
first of all, in a different structuring of the study material and its selection since this textbook 
is focused on solving those applied problems, that a specialist in information technologies 
confronts with. Moreover, each applied problem is accompanied by the developed computer 
program for implementing its algorithms in the Python language. 
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Chapter 1. SETS AND METRIC SPACES, THEIR CLASSES  

AND CHARACTERISTICS 
 
1.1 Sets, subsets and their characteristics 
 

The concept of a set in mathematics is understood as a collection of objects of a certain 
nature, which are called its elements. A set is given if all its elements and the rule according 
to which the elements belong to the set are known. 

The elements of the set can be, for example, all the rivers flowing through Ukraine, or 
all natural numbers on the number line, or all real numbers located on the segment [0,1] of the 
number line, or all continuous functions whose arguments are given on this segment of the 
number axis. 

In mathematics, sets are denoted by uppercase letters of the Latin or Greek alphabets, 
and their elements are denoted by lowercase letters from the same alphabets, for example, 

,  ,  ,  ,  ,  ,  ,   A B X Z Ε Φ Ω Ψ  – are sets, and ,  ,  ,  ,  ,  ,  ,  a b x z ε φ ω ψ −  are elements. A symbolic 
entry indicates ,Xx∈ that an element belongs to a set, and a symbolic entry indicates Xx∉ – 
that it does not belong to a set. A set with a finite number of elements is called a finite set, 
and a set with an infinite number of elements is called an infinite set. An example of a finite 
set is the set of cars registered in Ukraine, and an example of an infinite set is the set of real 
numbers on the segment [0,1] of the number axis. If the elements of the set A are a finite 
numerical sequence with n members, then symbolically it can be written as 

{ }, 1,  2,  ...,  iA a i n= = . If the elements of this set A are an infinite numerical sequence of 

members, then it can be symbolically written in the form { }, 1,  2,  3...iA a i= =  . A Set that 
does not contain any element, is called an empty set and is denoted by the symbol 0/  or O , 
which does not need to be equated with the number “zero”. 

If the sets A  and B  consist of the same elements, then they are considered equal, as 
evidenced by the record BA = . If not all the elements of the set A  are included in the set B , 
then the set A  is called a subset of the set B , as evidenced by the record BA⊂ . For 
example, on the number line, the set of rational numbers ,R  each of which is known to be the 
ratio of two integers, is a subset of the set Z of real numbers. If we are not sure that the 
subset of the set A contains fewer elements than the set B, then we write it like this: .BA⊆  

When two sets A and B are combined, a new set M is formed, which is called their sum 
and which contains all the elements of both of these sets, and each identical element of both 
sets is included in their sum M as one element - symbolically, the sum is written as follows: 
 BAM ∪=   (1.1) 

For example, if A and B and are numerical sets, where 

 { }5,4,3,2,1=A ,  { }8,7,6,5,4=B ,   (1.2) 

then, according to (1.1), we will have 

  { } { } { }1, 2,3, 4,5 4,5,6,7,8 1, 2,3,4,5,6,7,8M A B= ∪ = ∪ =   (1.3) 

At the intersection of two sets A  and B , a new set P is formed, which is called their 
intersection and which contains only those elements of both sets that are the same, and each 
of these identical elements of both sets is included in their intersection as one element - the 
intersection is symbolically written as follows: 

 BAP ∩=   (1.4) 
For numerical sets (1.2) given in the conditions of the previous example, according to 

(1.4), we have  
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  { } { } { }5,48,7,6,5,45,4,3,2,1 =∩=∩= BAP   (1.5) 

For the sum and the intersection of sets ,  ,  A B C  the following properties are valid: 
Asociality 

   ( ) ( )CBACBA ∪∪=∪∪ ,  (1.6) 

  ( ) ( )CBACBA ∩∩=∩∩ ,  (1.7) 

Commutativity 

  ABBA ∪=∪ ,  (1.8) 

   ABBA ∩=∩ ,  (1.9) 
Distributiveness 

  ( ) ( ) ( )CBCACBA ∩∪∩=∩∪ ,  (1.10) 

  ( ) ( ) ( )CBCACBA ∪∩∪=∪∩   (1.11) 

And for the sum and intersection of a set A with itself and with its subset B, the 
relations are valid 

  ,AAA =∪  (1.12) 

  ,AAA =∩  (1.13) 

  ,ABA =∪  (1.14) 

  BBA =∩  (1.15) 
The set Q consisting of the elements of the set A that are not included in the set B is 

called the difference of these sets and is denoted as BA −  or BA \  , i.e. 

  BABAQ \=−=   (1.16) 

It is quite obvious that in the general case 

   ABBA −≠−    (1.17) 
For example, for numerical sets (1.2) 

  { }3,2,1=− BA ,  (1.18) 

  { }6,7,8B A− =   (1.19) 

If the set A is a subset of the set B, then the difference AB −  is called the complement 
of the set A to the set B and is symbolically denoted as ACB , i.e. 

  ABACB −=   (1.20) 

For example, the set R   of irrational numbers on the number line is the complement of 
the set R of rational numbers to the set Z of real numbers, i.e. 

  RZRCR Z −==   (1.21) 

If the sets , 1,  2,  ...,  iA i n=  are subsets of the set A, then the relations are valid 

  ( )nAnAAA AAACACACAC ∩∩∩=∪∪∪ ...... 2121 ,  (1.22) 

  ( )nAnAAA AAACACACAC ∪∪∪=∩∩∩ ...... 2121 ,  (1.23) 
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the correctness of which is easy to verify graphically, for example, for  n = 3, іf the set A is 
represented in the figure as a square with three circles inscribed in it, representing the subsets 
of 1 2 3,  ,  .A A A  

An important characteristic of sets is their equivalence, according to which sets A,B are 
considered as equivalent if, according to some rule, each element Aa∈  is matched by one 
unique element Bb∈ , and each element Bb∈  is matched by one unique element Aa∈ . For 
example, a set A of privately owned passenger cars, each of which is registered to only one 
owner in a certain settlement, and a set B of people who own these cars are equivalent. The 
rule by which the equivalence of these sets is established is the entry of the owner's surname 
in the vehicle passport. 

And in order to compare non-equivalent sets, the concept of their power is introduced, 
which for the set A is symbolically written as A  and which is determined by something 
common that occurs in all sets equivalent to the one under consideration. It is obvious that 
finite sets of different natures have only the number of their elements in common, and 
therefore, if a set A has n of elements, and a set B has m  of elements and at the same time 

mn > , then we state that the set A has a power greater than the set B. 
But there arises a question: “And how to compare the power of infinite sets, each of 

which has an infinite number of elements?”. 
In mathematics, it is established that of all infinite sequences, the natural series N 

approaches infinity the fastest since each of its subsequent numbers is equal to the previous 
number increased by one, and at the same time, when forming this series, all real numbers 
that are contained on the number axis in each such unit are omitted. And therefore the natural 
series, which is an infinite series of numbers, is an infinite set of the lowest power, 
symbolically denoted by a small Latin letter ,a  that is, 

  ,N a=   (1.24) 

and all other infinite sets will be compared among themselves, based on how they are related 
by power to the power of the natural series, determined by the relation (1.24). And all 
infinite sets with the power of a natural series are called countable sets, since each of their 
elements can be assigned an index equal to the corresponding number of the natural series, 
due to which each of their elements can be counted. 

And the first fact that was established in mathematics after the agreement regarding the 
power of the natural series is that the power of the set Z of real numbers given on the 
interval [0,1] is bigger than a . 

The proof of this fact is simple - if you add a sequence of real numbers 1 2 3,  ,  ,  ...x x x  on 
the segment [0,1] of the numerical axis so that each subsequent number is three times smaller 
than the previous one, and divide this segment [0,1] into three equal segments 1∆  each with a 
width of at least one a point 1x  will not enter from these segments. Let's divide the segment in 
which the point 1x  did not enter, also into three equal segments of width 2∆  each, and choose 
the one from them in which the point 2x . did not enter. According to this algorithm, we will 
continue this process ad infinitum. As a result, on the segment [0,1] of the numerical axis, we 
will receive a counted set 1 2 3,  ,  ,  ...,∆ ∆ ∆ , the elements of which are smaller and smaller 
segments of the segment, and next to which, on the same segment, there is a previously 
calculated set of numbers 1 2 2,  ,  ,  ...,x x x ,, none of which falls into any of these segments . And 
this means that there are more real numbers on the segment [0,1] of the number axis than 
there are numbers of the natural series on the entire number axis, which allows us to conclude 
that the power of an infinite set of real numbers on the segment [0,1] is greater than the 
power of the natural series, which is a countable set. 
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In mathematics, the power of an infinite set of real numbers on the interval [0,1] is 
called the power of a continuum denoted by a lowercase Latin letter c, therefore, the 
inequality is valid 

  .c a>   (1.25) 

Moreover, it was established that for  powers c, a the inequality (1.25), as well as  the 
equality 

  2 .ac =   (1.26) 
are real. 

 
To prove the equality (1.26), we will use the method of mathematical induction 

according to the algorithm: we will consider successively which powers 0 1 2 3 ,  ,  ,  n n n n  

will have sets  generated by finite sets { } { } { } { }0 1 1 2 1 2 3 1 2 3, , , , , , ,A O A a A a a A a a a= = = =  if 
all possible subsets generated by the elements of these finite sets are introduced as elements 
into each of the generated sets. Bearing in mind that the number of combinations of elements 
of  C from the n of the elements on m, as is known from the high school mathematics, shall be 
determined according to correlation 

  ( )!!
!

mnm
nCm

n −
= , (1.27) 

we will find that: 

  

0 0
0 0

0 1 1
1 1 1

0 1 2 2
2 2 2 2

0 1 2 3 3
3 3 3 3 3

0! 1 2 ,
0!0!

1! 1! 1 1 2 2 ,
0!1! 1!0!

2! 2! 2! 1 2 1 4 2 ,
0!2! 1!1! 2!0!

3! 3! 3! 3! 1 3 3 1 8 2 .
0!3! 1!2! 2!1! 3!0!

n C

n C C

n C C C

n C C C C

 = = = =

 = + = + = + = =


 = + + = + + = + + = =


 = + + + = + + + = + + + = =


  (1.28) 

According to the ideology of the method of mathematical induction, it follows from 
relations (1.28) that if a finite set { }1 2 3,  ,  ,  ...,  n nA a a a a=  has n elements, then the power 

nn  of the set generated by it, which includes all possible subsets of this set, will be equal to 

  2 .n
nn =   (1.29) 

And hence the conclusion that if the power of the counted set is ,a  equal to the 
power of the infinite set of real numbers generated by it on the interval [0, 1], the 
elements of which are all possible subsets of the elements of this set, will be equal to two 
to the power of ,a  which proves the validity of the equality (1.26 ). 

And now let's return to the expression (1.21), according to which the set Z of real 
numbers on the segment [0, 1] of the numerical axis is the sum of the subset R of rational 
numbers and the subset R  of irrational numbers given on the same segment. 

As is known, each rational number is the ratio of two integers, and if this rational 
number is less than one, then its numerator is always an integer that is smaller than the 
number in the denominator. Since the integers are elements of the natural series, which is a 
countable power set, then these numbers can be counted both in the numerator and in the 
denominator, and therefore the subset of rational numbers on the segment [0, 1] of the 



12 

number axis is also a countable set of power a. The above fact has two consequences, the 
first of which proves that the subset of irrational numbers on the specified segment is an 
infinite set of the power of the continuum c, because only due to this subset  the set of real 
numbers on the specified segment will have the power c that we have already shown above 
with respect to the set of real numbers. And the second consequence is the statement that if 
any counted subset is added to the power set of the continuum, the power of their sum 
remains equal c. 

And then we pay attention to the fact that all unit segments on the number axis, located 
between adjacent natural numbers, can be counted by assigning to each of them an index 
equal to the natural number placed on the right border of each such unit segment, so a subset 
of unit segments, placed between natural numbers on the number axis, is a counted set of 
power ,a , which is a smaller power of the continuum of the unit segment [0, 1] of the number 
axis. So, based on this statement, we can draw an important conclusion that the entire axis of 
real numbers is a multiple of the power of the continuum c. 

But, as we have already shown above, the set that is generated by the union of all 
possible subsets of the generic set of a certain power has a power equal to two to the 
power equal to the power of the generic set. And from this fact we draw the conclusion: the 
power f of the set of all functions f(x) the argument x of which is set on the segment [0, 1] 
(or on the entire numerical axis) of the power of the continuum c is equal to two in the 
power of c, that is, 

  cf 2=   (1.30) 

This is where we will finish the consideration of the material of the subsection 
dedicated to sets, subsets and their characteristics, which we will need when explaining the 
basics of functional analysis. Those who wish to learn more about this area of mathematics 
are referred to textbooks on set theory or functional analysis, which are used by students of 
mathematical specialties at universities. 

 
 

 
1.2 Metric spaces and their classes and characteristics 

 
Set 

  { }, , , , , ,x y z u vΩ =     (1.31) 

of the elements of some nature are called metric space if each ordered pair of elements 
,x y∈Ω  is in line with an integral number ( ),x yρ , which is called the metric of space 
Ω , if this number satisfies three axioms of metrics: 

1) axiom identity 

  ( ), 0x yρ =   (1.32) 

then and only then,  when 

  x y= ;  (1.33) 

2) axiom symmetry 

  ( ) ( ), ,x y y xρ ρ= ;  (1.34) 

3) the triangle axiom 

  ( ) ( ) ( ), , ,x y y z x zρ ρ ρ+ ≥ .  (1.35) 
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Considering these axioms we see that the metric ( ),x yρ  of space Ω  sets the 
distance between the elements x , y of this space. 

The elements of the metric space are called points. 
 

Examples 
 

1. For a three-dimensional Euclidean space ЗE  the distance between points 

{ }1 2 3,  ,  x x x x=  and { }1 2 3,  ,  y y y y=  ( , Зx y E∈ ) is determined by an 
expression 

 ( ) ( )
3

2

1
, .i i

i
x y x yρ

=

= −∑   (1.36) 

2. For the set [ ]0,1C  of continuous functions ( ) ( ),  ,  x t y t  , given on the 

segment [ ]0,1t∈ , the distance between the elements ( )x t  and ( )y t  is given by 
the expression 

  ( ) ( ) ( ), max .
t

x y x t y tρ = −   (1.37) 

If X – an arbitrary metric space then the sequence 

  { }nx X⊂   (1.38) 

coincides to a point  0 ,x X∈  if when  n →∞  

  ( )0, 0nx xρ → ,  (1.39) 

or, as written otherwise 

  0lim nn
x x

→∞
= .  (1.40) 

The sequence { },nx  that coincides to some point 0x , is limited. 
If the set contains all its limit points, then it is closed. 

Let the metric space X  is given, and let there be a sequence of points { }nx  in this space that 
coincides to the point 0x X∈ . Then, when n →∞  the expression (1.39) will be fair as well 
as the expression 

  ( )0, 0n px xρ + → , (1.41) 

for  and any 0>p . And the inequality of the triangle (1.35) using expressions (1.39) and 
(1.41) takes a  form of 

 ( ) ( ) ( )npnnpn xxxxxx ,,, 00 ++ ≥+ ρρρ .  (1.42) 

And from expressions (1.39), (1.41) and (1.42) due to the inequality of a triangle for 
metrics, we will have an expression  

  ( ), 0n p nx xρ + → . (1.43) 

If a condition (1.43) is fulfilled for some sequence { }nx X⊂ , then it is called a 
fundamental sequence or sequence that coincides in itself or a sequence of Cauchy. 
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If in the metric space X, any sequence { }nx X⊂ ,that coincides to itself,  coincides to 
some limiting point 0x , which is an element  of the same space, that is 0x X∈ , then this 
space X is called complete. 

Metric space X is called linear if it defines the operations of addition and 
multiplication by the scalar, which satisfy the following conditions: 

1)   * ** ** * * **, ,x x x x x x X+ = + ∀ ∈ ;  (1.44) 

2) ( ) ( )* ** *** * ** *** * ** ***, , ,x x x x x x x x x X+ + = + + ∀ ∈ ;  (1.45) 

3)  0 , , 0x x x X X+ = ∀ ∈ ∈ ,   (1.46) 

where the element 0 is zero of the set X; 

4) for *x X∀ ∈   there is **x X∈  such that 

 * ** 0x x+ = ,  (1.47) 

where the element **x  is an element opposite to the element *;x  

5)  1 ,x x x X⋅ = ∀ ∈ ;  (1.48) 

6)  ( ) ( ) ,x x x Xα β α β⋅ ⋅ = ⋅ ⋅ ∀ ∈  and ,α β∀ ;  (1.49) 

7) ( ) ,x x x x Xα β α β+ ⋅ = ⋅ + ⋅ ∀ ∈  and ,α β∀ ;  (1.50) 

8)  ( )* ** * ** * **, ,x x x x x x Xα α α⋅ + = ⋅ + ⋅ ∀ ∈  and α∀ .  (1.51) 

A linear metric space X is called  normalized if x X∀ ∈  it can be matched by some 
non-negative number x , which is called the norm and which satisfies the following 
conditions: 

1)  0x =   if and only if  0x = ;  (1.52) 

2)  x xα α⋅ = ⋅ ,   α  is a scalar;  (1.53) 

3) * ** * ** * **, ,x x x x x x X+ ≤ + ∀ ∈ .  (1.54) 

It is quite obvious that the norm x  is the distance from the element x to the zero 
element of the set X. 

 
Examples of norms: 

1) for space [ ]0,1C  

 ( )
[ ]

( )
0,1

max
t

x t x t
∈

=   (1.55) 

or 

 ( )
[ ]

( )
0,1

sup
t

x t x t
∈

= ;  (1.56) 
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2) for the Euclidean dimension nE  of the space  n 

  2

1

n

i
i

x x
=

= ∑ ,  (1.57) 

where { }1 2,  ,  ,  ,nx x x x=   nx E∈ . 
 

It is obvious that for any linear normalized space X the relation is valid 

  ( )* ** * **, ,x x x xρ− =   (1.58) 

where * **, .x x X∈  
 

A complete linear normalized space is called Banach (after the name of the 
mathematician who studied this space) and is denoted as B-space. 

It is clear that the spaces [ ]0,1C  and nE  are Banach. 
Note that the norm in B-space can be introduced in different ways, so long as it meets 

the conditions (1.52), (1.53), (1.54). 
For example, in the space of functions ( )x t  continuous on a segment [ ]0,1t∈ , the 

norm can be introduced not only in the form (1.55), but also in the form 

  ( )
1

0

x x t dt= ∫ . (1.59) 

Such a B-space is called a Lebesgue space which is  denoted by [ ]0,1L , to 
distinguish it from the space [ ]0,1C  of the same functions, but with norm (1.55). 

For space nE  as a norm, you can use not only the ratio (1.72), but also a more general one 

 

1

1
, 0

n pp
i

i
x x p

=

 
= > 
 
∑ . (1.60) 

It is clear that (1.57) coincides to (1.60) for 2p = . 

A Banach space with a scalar product of elements is called a Hilbert space (after 
the name of the mathematician who studied it) and is denoted as an H-space. 

H-space can be finite-dimensional or infinite-dimensional. 
The scalar product of the elements ,f g H∈  is written in the form ( ),f g  or ,f g . 

The scalar product must be subject to the following conditions: 
 

1) , ,f g g f= , (1.61) 

2) , ,f g f gα α⋅ = ⋅ , (1.62) 

3) , ,f g f gα α⋅ = ⋅ , (1.63) 

4) 1 2 1 2, , ,f f g f g f g+ = + ; (1.64) 
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5) 1 2 1 2, , ,f g g f g f g+ = + ; (1.65) 

6) , 0f f > , якщо 0f ≠ . (1.66) 

It follows from the expression for the norm that for the H-space 

 ,f f f= . (1.67) 

H-space is often considered in two implementations. 

1. Space 2l  of all counted ordered sequences 2x l∈  

 { }1 2,  ,  ,  ,  nx x x x=    (1.68) 

such that have the property 

 2

1
i

i
x

∞

=

< ∞∑ . (1.69) 

For elements: * **
2,x x l∈ : 

 ( ) ( )2* ** * **

1
, i i

i
x x x xρ

∞

=

= −∑ ; (1.70) 

 ( )2* *

1
i

i
x x

∞

=

= ∑ ; (1.71) 

 ( )* ** * **,x x x xρ− = ; (1.72) 

 * ** * **

1
, i i

i
x x x x

∞

=

= ⋅∑ ; (1.73) 

 ∗∗∗ = xxx ,  (1.74) 

 
It follows from these relations that 2l -space is a generalization of Euclidean -nE space 

when  n →∞ . 
2l  -space is sometimes called a coordinated Hilbert space. 

2. The space [ ]2 ,L a b  of functions ( )f t  with an integrated square, that is, for 
which 

 ( )2
b

a

f t dt < ∞∫ . (1.75) 

The following relations are valid for ( ) ( ) [ ]2, ,f t g t L a b∈ : 

 ( ) ( ) ( )( )2,
b

a

f g f t g t dtρ = −∫ ; (1.76) 
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 ( )2
b

a

f f t dt= ∫ ; (1.77) 

 ( ),f g f gρ− = ; (1.78) 

 ( ) ( ),
b

a

f g f t g t dt= ⋅∫ . (1.79) 

Let's write two widely used inequalities separately: 

the Cauchy–Minkowski inequality 

  f g f g+ ≤ + ,  (1.80) 

the Buniakovsky–Schwartz inequality 

 ,f g f g≤ ⋅ , (1.81) 

to prove which it is enough to substitute expressions for all components in them. 
 
 
 
 

1.3  Orthonormal subsets in Hilbert spaces 

 
Consider a functional Hilbert space [ ],H a b  such that ( ) ( ) [ ], ,x t y t H a b∈ , 

[ ],t a b∈ . 

Let the scalar product ,x y  of functions ( )x t  and ( )y t  equal to zero, that is, 

 ( ) ( ), 0
b

a

x y x t y t dt= ⋅ =∫ . (1.82) 

If the condition (1.82) is satisfied for the functions ( ) ( ) [ ], ,x t y t H a b∈ , then they 

are said to be orthogonal on [ ],a b . 

Let us have in the Hilbert space [ ],H a b  a finite-dimensional or infinite sequence of 

functions ( ){ }k tϕ  such that 

.  ( ){ } [ ] [ ], , ,k t H a b t a bϕ ⊂ ∈ . (1.83) 

If the condition is true for this sequence ( ){ }k tϕ  

 ( ) ( ), 0,
b

k m k m
a

t t dt k mϕ ϕ ϕ ϕ= ⋅ = ≠∫ , (1.84) 

then this sequence is called orthogonal. 
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If the condition is satisfied for an orthogonal sequence ( ){ } [ ],k t H a bϕ ⊂  

 ( )2 1
b

k
a

t dtϕ =∫ , (1.85) 

then this sequence is called orthonormal. 
A sequence ( ){ } [ ],k t H a bϕ ⊂  is called orthogonal with weight ( )w t , if there 

exists a function ( ) [ ],w t H a b∈ , that satisfies the condition 

 ( ) ( ) ( ) 0,
b

k m
a

t t w t dt k mϕ ϕ⋅ ⋅ = ≠∫ . (1.86) 

It is clear that the sequence ( ) ( ){ } [ ],kw t t H a bϕ⋅ ⊂  is simply orthogonal. 

A subset of orthogonal functions ( ){ } [ ],k t H a bϕ ⊂  is complete in H-space if there 
is no nonzero function in it that would be orthogonal to any of the functions of this sequence. 

A sequence of functions ( ){ } [ ],k t H a bϕ ⊂  is called closed in H-space if for 

( ) [ ],f t H a b∀ ∈  and for 0ε∀ >  it is possible to construct such a linear combination 

of functions ( )k tϕ , taken with weight kλ , that the condition is fulfilled 

 ( ) ( ) ( ) ( )1 1 2 2 k kf t t t tλ ϕ λ ϕ λ ϕ ε− ⋅ − ⋅ − − ⋅ − <  . (1.87) 

This means that with an error that does not exceed ,ε  the function ( ) [ ],f t H a b∈  

on the segment [ ],a b  can be presented in the form 

 ( ) ( )
1

N

k k
k

f t tλ ϕ
=

≅ ⋅∑ , (1.88) 

where N can be either a finite integer or infinity. 

Different mathematics for basic functions 

 ( ) , 0,k
kf t t k n= =  (1.89) 

obtained various systems of orthonormal polynomials for different weight functions and 
orthogonalization intervals. Therefore, it is not necessary to build this sequence yourself every 
time you need to approximate a function ( ) [ ],f t H a b∈  using an orthonormal sequence 

( ){ } [ ],k t H a bϕ ⊂ . It is enough to choose one of those built by others, using a reference 
book on higher mathematics or a manual on the mathematical theory of processing the results 
of experiments. 
 

Here are examples of orthogonalization intervals, weighting functions, and 
normalization factors of the most common systems of orthogonal polynomials (Table 1). 
 
 



19 

Table 1 - Examples of orthogonalization intervals, weighting functions, and 
normalization factors for the most common systems of orthogonal polynomials   
 

orthogonal 
polynomials   

orthogonalizati
on intervals 

weighting 
functions 

( )W t  
normalization factors 

Legendre 
( )kP t  

[ ]1,1t∈ −  1 ( )( )
1

2

1

2
2 1kP t dt

k−

=
+∫  

Chebyshov І 
( )kT t  

[ ]1,1t∈ −  ( )
1

2 21 t
−

−  ( )( ) ( )
1 1

2 2 2

1

, 0
1 2

, 0
k

k
T t t dt

k

π

π

−

−

 ≠− = 
 =

∫  

Chebyshov  ІІ 
( )kU t  

[ ]1,1t∈ −  ( )
1

2 21 t−  ( )( ) ( )
1 1

2 2 2

1

1
2kU t t dt π

−

− =∫  

Laguerra 
( )kL t  

[ )0,t∈ ∞  te−  ( )( )2

0

1t
kL t e dt

∞
− =∫  

Laguerra 
attached 

( ) ( )i
kL t  

[ )0,t∈ ∞  i tt e−⋅  
( ) ( )( ) ( )2

0

1 !
!

i i t
k

k
L t t e dt

k

∞
− +

=∫  

Ermita 
( )kH t  ( ),t∈ −∞ ∞  2te−  ( )( ) 22 2 !t k

kH t e dt k π
∞

−

−∞

= ⋅ ⋅∫  

 
 

Thus, in order to approximate the function ( ) [ ],f t H a b∈ , [ ],t a b∈  using an 

orthonormal system of polynomials ( ){ } [ ],k t H a bϕ ⊂ , it is necessary, based on the interval 

of orthogonalization [ ],a b  and the convenience of the weight function ( )w t , to select one 
or another orthonormal system of polynomials from the directory and find the ratio for the 
general member of the selected system, revealing which one to obtain the number of its 
members, which is sufficient to ensure the given accuracy of the approximation. 

For example, we give an expression for a common member – 

 𝑃𝑛(𝑡) = 1
2𝑛𝑛!

 𝑑
𝑛

𝑑𝑡𝑛
(𝑡2 − 1)𝑛,        𝑛 = 0,1,2, … ,𝑁 (1.90) 

and the first 7 members of the orthonormal sequence for Legendre polynomials, the weighting 
function for which is the function w(t) = 1, the orthogonalization interval is the segment  
[-1,1), the normalization factor has the form 2/(2n + 1). Therefore, according to expression 
(1.90), we will have: 
 



20 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑃0(𝑡) = 1,
𝑃1(𝑡) = 𝑡,

𝑃2(𝑡) = 1
2

(3𝑡2 − 1),

𝑃3(𝑡) = 1
2

(5𝑡3 − 3𝑡),

𝑃4(𝑡) = 1
8

(35𝑡4 − 30𝑡2 + 3),

𝑃5(𝑡) = 1
8

(63𝑡5 − 70𝑡3 + 15𝑡),

𝑃6(𝑡) = 1
16

(231𝑡6 − 315𝑡4 + 105𝑡2 − 5),

𝑃7(𝑡) = 1
16

(429𝑡7 − 693𝑡5 + 315𝑡3 − 35𝑡)⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

  (1.91) 

 
As a second example, we give the formula for the general member – 

 𝑇𝑛(𝑡) = 1
2𝑛
��𝑡 + √𝑡2 − 1�

𝑛
+ �𝑡 − √𝑡2 − 1�

𝑛
� ,        𝑛 = 1,2, … ,𝑁  (1.92) 

and the first 7 members of the orthonormal sequence for Chebyshov 1 polynomials, the 
weighting function for which is the function 𝑤(𝑡) = √1 − 𝑡2, the orthogonalization interval is 
the segment [-1,1), the normalization factor has the form π for k = 0 and π/2 for k ≠ 0. 
Therefore, according to expression (1.92), we will have: 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑇0(𝑡) = 1,
𝑇1(𝑡) = 𝑡,

𝑇2(𝑡) = 1
2

(2𝑡2 − 1),

𝑇3(𝑡) = 1
4

(4𝑡3 − 3𝑡),

𝑇4(𝑡) = 1
8

(8𝑡4 − 8𝑡2 + 1),

𝑇5(𝑡) = 1
16

(16𝑡5 − 20𝑡3 + 5𝑡),

𝑇6(𝑡) = 1
32

(32𝑡6 − 48𝑡4 + 18𝑡2 − 1),

𝑇7(𝑡) = 1
64

(64𝑡7 − 112𝑡5 + 56𝑡3 − 7𝑡)⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 (1.93) 

 
 
 
 
1.4 Approximation of continuous functions in Hilbert spaces 

 
The approximation of continuous functions is understood as the process of 

finding an analytical description of a function given by the elements of some set, which 
may not be a subset of the selected space, in the selected space. For example, a polynomial 
approximation of a function given in the form of a table. 

Let ( ){ } [ ],k t H a bϕ ⊂ , [ ],t a b∈ , be some complete sequence of orthonormal 
functions that is closed in this space. 

Let [ ] [ ], ,H a b L a b=  is the H-space of functions ( ) [ ],f t L a b∈  for which the 
condition is satisfied 

 ( )
b

a

f t dt < ∞∫ , (1.94) 
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and the metric ( )1 2,f fρ  is given by the ratio 

 ( ) ( ) ( )1 2 1 2,
b

a

f f f t f t dtρ = −∫ . (1.95) 

Suppose that the series 

 ( )k k
k

tλ ϕ⋅∑ , (1.96) 

where kλ  is some scalar unknown to us, which converges uniformly to some function 

( ) [ ],f t L a b∈ . This means that for 0ε∀ >  exists such that m for [ ],t a b∀ ∈  and 
n m∀ ≥  the relation holds 

 ( ) ( )
0

b n

k k
ka

f t t dtλ ϕ ε
=

− ⋅ <∑∫ , (1.97) 

from which it n →∞  follows that 

 ( ) ( )
0

k k
k

f t tλ ϕ
∞

=

= ⋅∑ . (1.98) 

To determine the weighting coefficients , 0,k kλ = ∞ , multiply both parts of equation 
(2.41) by ( )j tϕ  and integrate the result in the range from « a » to «b».. As a result, we get: 

 ( ) ( ) ( ) ( )
0

b b

j k k j
ka a

f t t dt t t dtϕ λ ϕ ϕ
∞

=

⋅ = ⋅ ⋅∑∫ ∫ . (1.99) 

Since ( ){ } [ ],k t L a bϕ ⊂  it is an orthonormal sequence, relations (1.84) and (1.85) 
hold for it. Taking this into account, from (1.99) we have 

 ( ) ( ) , 0,1, 2,
b

j j
a

f t t dt jλ ϕ= ⋅ =∫ 
. (1.100) 

The weighting coefficients jλ  are called Fourier coefficients, and their complete 

sequence { }jλ  is called the Fourier spectrum of the expansion of a function 

( ) [ ],f t L a b∈  by an orthonormal system of functions  ( ){ } [ ],j t L a bϕ ⊂ . 
The requirement (1.97) of uniform convergence of the series (1.96) to the function 

( )f t  is the so-called “strong convergence requirement”. 
But it turns out that in H-space the strong convergence is equivalent to “convergence 

on the average”, which is a weaker requirement and can be written as 

 ( ) ( )
2

0
lim 0

b n

k kn ka

f t t dtλ ϕ
→∞

=

 
− ⋅ = 

 
∑∫ . (1.101) 

We consider the process of approximating a function ( ) [ ]2 ,f t L a b∈ in H-space 

[ ]2 ,L a b  using an orthonormal sequence ( ){ } [ ]2 ,k t L a bϕ ⊂ . 
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In this case, the approximation problem can be reduced to such a selection of partial 
sum coefficients kC  

 ( ) ( )
0

n

n k k
k

S t C tϕ
=

= ⋅∑  (1.102) 

in the H-space [ ]2 ,L a b  so that this sum approaches the function ( ) [ ]2 ,f t L a b∈  with an 
error not exceeding the given one, i.e. so that 

 ( ) ( ) ( ) ( ) 2 min
k

b

n n C
a

f t S t f t S t dt− = − →  ∫ . (1.103) 

To find min
kC

 of the  expression (1.103), we compose and solve the system of equations 

 0, 0,
k

E k n
C
∂

= =
∂

, (1.104) 

where 

 

( ) ( )

( ) ( ) ( ) ( )

2

22 2 .

b

n
a

b b b

n n
a a a

E f t S t dt

f t dt f t S t dt S t dt

= − =  

= − ⋅ ⋅ +   

∫

∫ ∫ ∫
 (1.105) 

As a result of solving the system of equations (1.104), we find that 

 k kC λ= . (1.106) 

Therefore, in order for the partial sum ( )nS t  to approximate the function ( )f t  with the 
specified accuracy, it is necessary to choose the Fourier coefficients kλ  of the function ( )f t  
as coefficients kC . 

Substituting (1.106) into (1.105), we will have: 

 ( )2 2

0
0

b n

k
ka

E f t dt λ
=

= − ≥∑∫ . (1.107) 

Because 

 lim 0
n

E
→∞

= , (1.108) 

then it follows from the expression (1.107) that 

 ( )2 2

0

b

k
ka

f t dt λ
∞

=

=∑∫ . (1.109) 

The relation (1.109) is called Parseval's equality. The square root of both its parts 
can be interpreted as the length of the vector ( )f t  in the H-space [ ]2 ,L a b , expressed 
through its projections on the orthogonal coordinate system ( ){ }k tϕ , which is a subset of the 
same H-space [ ]2 ,L a b . 



23 

Concluding this subsection, we emphasize  that in   case of using the Legendre 
orthonormal polynomial function (1.91) for approximation, the Fourier coefficients must be 
calculated not by the expression (1.100), but by the expression 

 𝜇𝑛 = 2𝑛+1
2 ∫ 𝑓(𝑡)𝑃𝑛(𝑡)𝑑𝑡,    𝑛 = 0,1,2, … ,𝑁1

−1 , (1.110) 

and in the case of using Chebyshev 1 (1.93) to approximate the function ( )f t  of orthonormal 
polynomials, the Fourier coefficients must be calculated not by the expression (1.100), but by 
the expressions: 

 𝜇𝑛 = 1
𝜋 ∫ 𝑓(𝑡)𝑇𝑛(𝑡)(1 − 𝑡2)−

1
2 𝑑𝑡,    𝑛 = 01

−1 , (1.111) 

 𝜇𝑛 = 2
𝜋 ∫ 𝑓(𝑡)𝑇𝑛(𝑡)(1 − 𝑡2)−

1
2 𝑑𝑡,    𝑛 = 1,2, … ,𝑁1

−1  (1.112) 

 
 
 
 

1.5 Programs for implementing operations in metric spaces in Python 
 
A Python program for checking sets for equality, determining their power, and 

checking for equivalence 
(Program 1): 

In [1]: A={1,2,3,4,5} 
In [2]: B={4,5,6,7,8} 
In [3]: LA=list(A); LA 
Out[3]: [1, 2, 3, 4, 5] 
In [4]: LB=list(B); LB 
Out[4]: [4, 5, 6, 7, 8] 
In [5]: LA==LB 

Out[5]: False 
In [6]: len(LA)  
Out[6]: 5 
In [7]: len(LB) 
Out[7]: 5 
In [8]: len(LA)==len(LB) 
Out[8]: True 

      End of program 1 

 
 A Python program for finding the sum of sets and their union excluding 
common elements, as well as for determining the difference and intersection of sets  

 (Program 2): 
In [1]: dLA = {} 
In [2]: dLA['a']=1 
In [3]: dLA['b']=2 
In [4]: dLA['c']=3 
In [5]: dLA['e']=4 
In [6]: dLA['h']=5 
In [7]: dLA 
Out[7]: {'a': 1, 'b': 2, 'c': 3, 'e': 4, 'h': 5}  
In [8]: dLB={} 
In [9]: dLB['e']=4;dLB['h']=5;dLB['p']=6;\ 
          dLB['q']=7;dLB['r']=8 
In [10]: dLB 

Out[10]: {'e': 4, 'h': 5, 'p': 6, 'q': 7, 'r': 8}  
In [11]: dLA.keys() | dLB.keys() 
Out[11]: {'a', 'b', 'c', 'e', 'h', 'p', 'q', 'r'}  
In [12]: dLA.keys() - dLB.keys() 
Out[12]: {'a', 'b', 'c'}  
In [13]: dLB.keys() - dLA.keys() 
Out[13]: {'p', 'q', 'r'} 
In [14]: dLA.keys() & dLB.keys() 
Out[14]: {'e', 'h'} 
In [15]: dLA.keys() ^ dLB.keys() 
Out[15]: {'a', 'b', 'c', 'p', 'q', 'r'} 

End of program 2. 
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 A Python program for determining the norm and metric of Banach spaces 
whose elements are numbers 

 (Program 3): 
In [1]: import numpy as np 
In [2]: a2=np.array([1,2]) 
In [3]: a3=np.array([1,2,3]) 
In [4]: a4=np.array([1,2,3,4]) 
In [5]: c2=np.array([2,1]) 
In [6]: c3=np.array([3,2,1]) 
In [7]: c4=np.array([4,3,2,1]) 
In [8]: e2=a2-c2;e2 
Out[8]: array([-1,  1]) 
In [9]: e3=a3-c3;e3 
Out[9]: array([-2,  0,  2]) 
In [10]: e4=a4-c4;e4 
Out[10]: array([-3, -1,  1,  3]) 
In [11]: import scipy 
In [12]: import scipy.linalg as la 
In [13]: la.norm(a2) 
Out[13]: 2.23606797749979 

In [14]: la.norm(a3) 
Out[14]: 3.7416573867739413 
In [15]: la.norm(a4) 
Out[15]: 5.477225575051661 
In [16]: la.norm(c2) 
Out[16]: 2.23606797749979 
In [17]: la.norm(c3) 
Out[17]: 3.7416573867739413 
In [18]: la.norm(c4) 
Out[18]: 5.477225575051661 
In [19]: m2=la.norm(e2);m2 
Out[19]: 1.4142135623730951 
In [20]: m3=la.norm(e3);m3 
Out[20]: 2.8284271247461903 
In [21]: m4=la.norm(e4);m4 
Out[21]: 4.47213595499958 

End of program 3. 
 
 
 A Python program for determining the norms and metrics of Banach spaces 
C[0,1] whose elements are functions 
(Program 4): 

In [1]: import numpy as np 
In [2]: x=np.linspace(0,1,11) 
In [3]: g1=lambda x: -1+3*x-x**2 
In [4]: g1vec=np.vectorize(g1) 
In [5]: g11=g1vec(x) 
In [6]: g11 
Out[6]: array([-1.  , -0.71, -0.44, -0.19, 0.04,   

         0.25, 0.44,  0.61,  0.76,  0.89,  1.])       
In [7]: g111=np.piecewise(g11,[g11<0,g11>=0],\ 
         [lambda g11:-g11,lambda g11: g11]) 
In [8]: g111 
Out[8]: array([1.  , 0.71, 0.44, 0.19, 0.04, 0.25,  
                      0.44, 0.61, 0.76, 0.89, 1.  ]) 
In [9]: ng1=g111.max( );ng1 
Out[9]: 1.0 
In [10]: ig1=g111.argmax( );ig1 
Out[10]: 0 
In [11]: g2=lambda x: 5*x-6*x**2 
In [12]: g2vec=np.vectorize(g2) 
In [13]: g22=g2vec(x);g22 
Out[13]: array([ 0.   , 0.44, 0.76, 0.96,1.04,1.   , 
                         0.84,  0.56,  0.16,  -0.36, -1.   ])                     
In [14]: g222=np.piecewise(g22,[g22<0,\ 
            g22>=0], [lambda g22:-g22,\ 
            lambda g22: g22]) 

In [15]: g222 
Out[15]: array([0.   , 0.44, 0.76, 0.96, 1.04,1.   , 
                        0.84, 0.56, 0.16, 0.36, 1.   ]) 
In [16]: ng2=g222.max( ); ng2 
Out[16]: 1.0399999999999998 
In [17]: ig2=g222.argmax( ); ig2 
Out[17]: 4 
In [18]: g3=lambda x: -1-2*x+5*x**2 
In [19]: g3vec=np.vectorize(g3) 
In [20]: g33=g3vec(x);g33 
Out[20]: array([-1.   , -1.15, -1.2  , -1.15, -1.   , 
                         -0.75, -0.4  , 0.05, 0.6 , 1.25, 2. ]) 
In [21]: g333=np.piecewise(g33,[g33<0,\ 
                     g33>=0], [lambda g33:-g33,\ 
                     lambda g33: g33]) 
In [22]: g333 
Out[22]: array([1.  , 1.15, 1.2 , 1.15, 1.  , 0.75, 
                        0.4 , 0.05, 0.6 , 1.25, 2.  ]) 
In [23]: mg3=g333.max( );mg3 
Out[23]: 2.0 
In [24]: ig3=g333.argmax( );ig3 
Out[24]: 10 
 
 
End of program 4. 
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 A Python program for determining the norms and metrics of Lebesgue spaces 
L(0,1), whose elements are functions 
 (Program 5): 

In [1]: import numpy as np 
In [2]: x=np.linspace(0,1,11) 
In [3]: g1=lambda x: -1+3*x-x**2 
In [4]: g1vec=np.vectorize(g1) 
In [5]: g11=g1vec(x) 
In [6]: g11 
Out[6]: array([-1.  , -0.71, -0.44, -0.19, 0.04,   

         0.25, 0.44, 0.61, 0.76, 0.89, 1. ])  
In [7]: g111=np.piecewise(g11,[g11<0,g11>=0],\ 
          [lambda g11:-g11,lambda g11: g11]) 
In [8]: g111 
Out[8]: array([1. , 0.71, 0.44, 0.19, 0.04, 0.25,\ 

         0.44, 0.61, 0.76, 0.89, 1.  ]) 
In [9]: c1=g111.sum( ) 
In [10]: nLg1=0.1*c1;nLg1 
Out[10]: 0.633 
In [11]: g2=lambda x: 5*x-6*x**2 
In [12]: g2vec=np.vectorize(g2) 
In [13]: g22=g2vec(x) 
In [14]: g22 
Out[14]: array([ 0.  ,  0.44,  0.76,  0.96, 1.04,  
                        1. , 0.84,  0.56, 0.16, -0.36, -1.  ]) 
In [15]: g222=np.piecewise(g22,[g22<0,\ 

g22>=0],[lambda g22:-g22,\ 
lambda g22: g22]) 

In [16]: g222 
Out[16]: array([0.  , 0.44, 0.76, 0.96, 1.04, 1.  , 
               0.84, 0.56, 0.16, 0.36, 1.  ]) 
In [17]: c2=g222.sum( ) 
In [18]: nLg2=0.1*c2;nLg2 
Out[18]: 0.712 
In [19]: g3=lambda x: -1-2*x+5*x**2 
In [20]: g3vec=np.vectorize(g3) 
In [21]: g33=g3vec(x) 
In [22]: g33 
Out[22]: array([-1.  , -1.15, -1.2 , -1.15,  -1. , 
                        -0.75, -0.4 , 0.05, 0.6, 1.25, 2.  ]) 
In [23]: g333=np.piecewise(g33,[g33<0,\ 
            g33>=0], [lambda g33:-g33,\ 
            lambda g33: g33]) 
In [24]: g333 
Out[24]: array([1.  , 1.15, 1.2 , 1.15, 1.  , 0.75, 
                        0.4 , 0.05, 0.6 , 1.25, 2.  ]) 
In [25]: c3=g333.sum( ) 
In [26]: mLg3=0.1*c3;mLg3 
Out[26]: 1.0550000000000002 
 
 
End of program 5.

 
 
 
 A Python program for determining the norm, metric, and scalar product in 
Hilbert spaces whose elements are functions of a real variable 
 (Program 6): 

In [1]: import sympy 
In [2]: from sympy import * 
In [3]: x,y,z=symbols('x y z') 
In [4]: f1=5*x**3-3*x**2+2*x-4 
In [5]: f2=1+2*x+3*x**3 
In [6]: f3=f1*f1;f3 
Out[6]: (5*x**3 - 3*x**2 + 2*x - 4)**2   
In [7]: f4=expand(f3);f4 
Out[7]: 25*x**6 - 30*x**5 + 29*x**4\ 
 - 52*x**3 + 28*x**2 - 16*x + 16 
In [8]: a=symbols('a') 
In [9]: a=integrate(f4,(x,0,1)) 
In [10]: a 
Out[10]: 914/105   
In [11]: nf1=a**0.5;nf1 
Out[11]: 2.9503833487806 
In [12]: f5=f2**2;f5 

Out[12]: (3*x**3 + 2*x + 1)**2 
In [13]: f6=expand(f5);f6 
Out[13]: 9*x**6 + 12*x**4 + 6*x**3\ 

+ 4*x**2 + 4*x + 1 
In [13]: b=symbols('b') 
In [14]: b=integrate(f6,(x,0,1)) 
In [15]: b 
Out[15]: 1999/210   
In [16]: nf2=b**0.5;nf2 
Out[16]: 3.08529538602832 
In [17]: f7=f1*f2;f7 
Out[17]: (3*x**3 + 2*x + 1)*(5*x**3 \ 
               - 3*x**2 + 2*x - 4) 
In [18]: f8=expand(f7);f8 
Out[18]: 15*x**6 - 9*x**5 + 16*x**4 \ 
              - 13*x**3 + x**2 - 6*x - 4 
In [19]: sd=integrate(f8,(x,0,1)) 
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In [20]: sd 
Out[20]: -2551/420 
In [21]: f9=f1-f2;f9 
Out[21]:  2*x**3 - 3*x**2 – 5 
In [22]: f10=f9**2;f10 
Out[22]: (2*x**3 - 3*x**2 - 5)**2 
In [23]: f11=expand(f10);f11 
Out[23]: 4*x**6 - 12*x**5 + 9*x**4\ 
             - 20*x**3 + 30*x**2 + 25 

In [24]: d=symbols('d') 
In [25]: d=integrate(f11,(x,0,1)) 
In [26]: d 
Out[26]: 1063/35 
In [27]: mf1f2=d**0.5;mf1f2 
Out[27]: 5.51102790515785 
 
End of program 6. 

 
 
 
 A Python program for approximating a function of a real variable given in the 
Hilbert space by weighted sums of Legendre polynomials orthonormal to the line segment 
 (Program 7): 

In [1]: import sympy 
In [2]: from sympy import * 
In [3]: x,t,P=symbols('x t P') 
In [4]: f1x=x**3-3*x**2+2*x-4 
In [5]: f1t=27*t**3-27*t**2+6*t-4 
In [6]: P0=1 
In [7]: P1=t 
In [8]: P2=(3*t**2-1)/2 
In [9]: P3=(5*t**3-3*t)/2 
In [10]: P4=(35*t**4-30*t**2+3)/8 
In [11]: P5=(63*t**5-70*t**3+15*t)/8 
In [12]: P6=(231*t**6-315*t**4\ 

+105*t**2-5)/16 
In [13]: P7=(429*t**7-693*t**5+315*t**3\ 

-35*t)/16 
In [14]: q0=f1t*P0*1/2 
In [15]: q1= f1t*P1*3/2 
In [16]: q2= f1t*P2*5/2 
In [17]: q3= f1t*P3*7/2 
In [18]: q4= f1t*P4*9/2 
In [19]: q5= f1t*P5*11/2 
In [20]: q6= f1t*P6*13/2 
In [21]: q7= f1t*P7*15/2 
In [22]: mju=symbols('mju') 
In [23]: mju0=integrate(q0,(t,-1,1));mju0 
Out[23]: -13 
In [24]: mju1=integrate(q1,(t,-1,1));mju1 
Out[24]: 111/5 
In [25]: mju2=integrate(q2,(t,-1,1));mju2 
Out[25]: -18 
In [26]: mju3=integrate(q3,(t,-1,1));mju3 
Out[26]: 54/5 
In [27]: mju4=integrate(q4,(t,-1,1));mju4 
Out[27]: 0 
In [28]: mju5=integrate(q5,(t,-1,1));mju5 
Out[28]: 0 
In [29]: mju6=integrate(q6,(t,-1,1));mju6 

Out[29]: 0 
In [30]: mju7=integrate(q7,(t,-1,1));mju7 
Out[30]: 0 
In [31]: su=symbols('su') 
In [32]: su01=mju0*P0+mju1*P1 
In [33]: f1t1=expand(su01);f1t1 
Out[33]: 111*t/5 – 13 
In [34]: su02=su01+mju2*P2 
In [35]: f1t2=expand(su02);f1t2 
Out[35]: -27*t**2 + 111*t/5 – 4 
In [36]: su03=su02+mju3*P3 
In [37]: f1t3=expand(su03);f1t3 
Out[37]: 27*t**3 - 27*t**2 + 6*t - 4 
In [38]: f1t12=f1t-f1t1 
In [39]: su11=integrate(f1t12*f1t12,(t,-1,1))  
Out[39]: 28512/175 
In [40]: nf1t21=su11**0.5;nf1t21 
Out[40]: 12.7642357501620 
In [41]: f1t22=f1t-f1t2 
In [42]: su12=integrate(f1t22*f1t22,(t,-1,1)) 
In [43]: su12 
Out[43]: 5832/175 
In [44]: nf1t22=su12**0.5;nf1t22 
Out[44]: 5.77284282530837 
In [45]: f1t32=f1t-f1t3 
In [46]: su13=integrate(f1t32*f1t32,(t,-1,1)) 
In [47]: su13 
Out[47]: 0 
In [48]: nf1t32=su13**0.5;nf1t32 
Out[48]: 0 
In [49]: import numpy as np 
In [50]: import matplotlib as mpl 
In [51]: import matplotlib.pyplot as plt 
In [52]: mpl.rcParams['font.family']='fantasy' 
In [53]: mpl.rcParams['font.fantasy'] \ 
             ='Arial','Times New Roman','Tahoma' 
In [54]: t=np.linspace(-1,1,100) 
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In [55]: f1t=27*t**3-27*t**2+6*t-4 
In [56]: f1t1=111*t/5 - 13 
In [57]: f1t2=-27*t**2 + 111*t/5 - 4 
In [58]: f1t3=27*t**3 - 27*t**2 + 6*t - 4 
In [59]: fig=plt.figure(facecolor='white') 
In [60]: plt.plot(t,f1t,'-k',t,f1t1,'-.g',t,f1t2,\ 
                      ':c',t,f1t3, '--r', linewidth=3) 
In [61]: plt.legend(fontsize=18) 
In [62]: ax=fig.gca() 
In [63]: plt.title(r'Апроксимація  функції' \ 
                       ' поліномами  Лежандра') 

In [64]: plt.text(0.45,.95,r'Графіки наближень'\ 
                                '  до функції', 
                       horizontalalignment='center',\ 
                       verticalalignment='center',\ 
             transform=ax.transAxes,fontsize=16) 
In [65]: plt.xlabel(u't-вісь абсцис',{'fontname':\ 
                                  'Times New Roman'}) 
In [66]: plt.ylabel(r'$f(t)$-ордината') 
In [67]: plt.grid(True) 
 

 
Note to program7: As shown in Figure 3, the graph of the function and its approximations 
can only be obtained if the part of this program, starting with command 49, is typed not using 
command lines, but in the form of a file like this shown in this figure. This is due to the fact 
that the matplotlib graphic editor is adapted to work with files, and not with command lines, 
when using which each subsequent command removes the result of the previous command 
from the screen, preventing the simultaneous display of the coordinate grid and graphs on the 
screen, and inscriptions 
 

 
 

Figure 3. Graph of the function and three approximations to it 
by Legendre polynomials 

 
End of program 7. 

 
 
 

1.6 Tasks for self-testing 
 
1. Define the concept of “set” and give examples of sets. 
2. What are the sum, intersection and difference of sets? 
3. What sets are equivalent? 
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4. Define the concept of “power of a set” 
5. What is the power of a natural series of numbers? 
6. What is the power of the set of rational numbers? 
7. What is the power of the set of real numbers? 
8. What is the power of the set of irrational numbers? 
9. Give the definition of a counted set 
10. How is the power of the counted set related to the power of the continuum? 
11. What is a metric space? 
12. What is a space metric and what conditions should it satisfy? . 
13. Which sets are complete and closed? 
14. Give the definition of a fundamental sequence in a metric space. 
15. Which metric space is complete? 
16. How is a linear metric space defined? 
17. What is the norm of space? Give examples of norms. 
18. Give the definition of Banach space. 
19. Give the definition of Hilbert space. Give examples. 
20. What conditions must be satisfied by a scalar product in Hilbert space? 
21. How are the metric and the norm, the norm and the scalar product related to each other 

 hilbert space? 
22. What is an orthonormal sequence of functions in Hilbert spacious? 
23. Which orthogonal sequence in Hilbert space is complete? Which is closed? 
24. Define the function approximation process. 
25. How to approximate a continuous function in space  L [a, b]? 
26. How to approximate a continuous function in space  L2 [a, b]? 
27. What is Parseval's equality. Give its geometric interpretation. 
28. What is the Fourier spectrum of a continuous function in Hilbert space? 
29. What orthogonal sequences based on power functions do you know? 
30. How to turn a set into a list? 
31. How to determine the number of elements in the list? 
32. Which operation checks the equality of sets? 
33. Which operation checks the equivalence of sets? 
34. How to set an empty dictionary? 
35. How to fill an empty dictionary with elements with keys? 
36. Why do you need the keys() method? 
37. How to combine sets? 
38. How to find the intersection of sets? 
39. How to find the difference of sets? 
40. How to find the union of sets without common elements? 
41. How to display the obtained result on the screen? 
42. What do the functions len(LA), dLA{} and dLA['a']=1 define? 
43. What function is used to calculate the norm in the Banach number space? 
44. What symbols in the program denote the metrics of the Banach number space 

between given points? 
45. Why do we need to use the lambda( ) function? 
46. What role does the vectorize( ) function play? 
47. What is the function piecewise( ) for? 
48. Why do you need the expand( ) command? 
49. How to bring the function defined on the segment [a,b] to the segment [-1,1], on which 

 defined Legendre polynomials in the approximation problem? 
50. Show the command in the program that introduces the fifth Legendre polynomial 
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Chapter 2. LEBEGUE'S MEASURE FOR SETS AND SPACES  

AND THEIR INTEGRALS 
 

2.1 Lebesgue measure for sets and spaces 
 
On the entire numerical axis or on its segment [a, b], which is also the segment [0,1], on 

which a certain set is specified, each element of this set is displayed by a point, which, as is 
known, has zero length. In this connection, two interrelated questions arise: “What is the 
length of a segment of the number axis with its own length ab −  or a segment with unit 
length occupied by the set on this segment? And how to measure the length of that part of the 
segment occupied by the points of this set?”. 

Mathematics gave comprehensive answers to these questions by introducing the concept 
of Lebesgue's measure and extending it to functions defined on this segment, on this part of 
the plane or on this volume. Let's reveal these answers in more detail. 

As we have already noted in the previous subsections, the power of the set of real 
numbers both on the entire numerical axis and on its segment [a, b], which can be considered 
in the version of the segment [0, 1], is equal to the power of the continuum c, and therefore for 
the convenience of expositions devoted to the theory of Lebesgue measure, we will consider 
exactly the set E defined on the segment [0,1]. 

Let us recall once again that the measure of a segment [a, b], as well as of an interval 
( )ba, , the measure of the sum of intervals iα , that do not intersect, but each of which is a 
subset of the segment [0, 1], will be the sum ∑

i
iα  of the lengths of these intervals. 

Let the limited numerical set E be a subset of the unit segment [0, 1], of the numerical 
axis, i.e., [0,1]E ⊂ . We denote the subset that complements the set E to the unit segment of 
the number axis by the symbol CE . 

We specify the set E by specifying its structure in the form of a limited one 

{ }nxxxE ,...,, 21=  (2.1) 

or counted 
{ },...,...,, 21 nxxxE =  (2.2) 

of numerical sequence. 
Cover each point ix  of sequences (2.1) or (2.2) with an interval iα , that does not intersect 

with other intervals that cover other points of these sequences, and find the sum ∑
i

iα  of the 

lengths of these intervals for each of these sequences, which will be equal to, respectively, 

 n

n

i
i αααα +++=∑

=

...21
1

, (2.3) 

 ......21
1

++++=∑
∞

=
n

i
i αααα   (2.4) 

Since the points on the number axis have no length, the intervals they cover within a 
unit segment of this axis can be very small, and therefore their sum will always have a lower 
limit 

 ∑=∗

i
iEm αinf . (2.5) 

This lower bound, given by the expression (2.5) and denoted by the symbol Em∗ , is 
called the external measure of the set E. It is obvious that the external measure CEm∗  of 
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the set CE , which complements the set E to the segment [0,1] with unit length on which they 
are both defined, can be determined in a similar way. 

The difference between the length of a segment [0,1] and the external measure CEm∗  of 
the set CE  that complements the set E to this segment [0,1] 

 CEmEm ∗
∗ −=1 ,  (2.6) 

is called the internal measure of the set E and is denoted by the symbol Em∗ . 
Definition: if the external measure Em∗  of the set E and its internal measure Em∗  

coincide and are equal to the same number mE , that is, if 

  mEEmEm == ∗
∗ , (2.7) 

then the set E is called Lebesgue measurable, and this number mE  is called the 
Lebesgue measure of the set E. 

It is obvious that from this statement, as a consequence, it follows that the set CE , 
which complements the set E to the unit segment on the number axis, is also measurable 
according to Lebesgue, and the expression for its measure mCE is also valid 

 mCECEmCEm == ∗
∗ , (2.8) 

similar to (2.7). 
For example, let's find Lebesgue measures for sets of real Z, rational R and irrational R  

numbers given on the interval [0,1], which are related by the relation 

  Z R R= ∪  (2.9) 

The segment [0,1] of the numerical axis contains closely spaced points, which are the 
projections of real numbers onto it, so the Lebesgue measure of the set Z, which has the 
power of the continuum c, is its length on this segment, i.e., 

  1=mZ . (2.10) 

As we already know, the set R of rational numbers is a countable set, so it can be 
written as an infinite sequence (2.2). Let's choose a quantity 0>ε  and cover the numbers of 
the counted sequence (2.2) with the counted sequence of intervals (2.4), choosing for the first 

interval the quantity ε , for the second 
2
ε – the quantity that can be presented as 12

ε , for the 

third 
4
ε – the quantity that can be presented as 22

ε  , for the nth – the quantity 12 −n
ε . In this 

case, the expression (2.4) can be rewritten as follows: 

       1 2 1 2 1
1

1 1 1 1... ... 1 ... ... 212 2 2 2 2 2 1
2

n n
i i

ε ε εα ε ε ε ε
∞

− −
=

   = + + + + + = + + + + + = =∑      − 
 

. (2.11) 

We pay attention to the fact that in the brackets in the middle part of the expression 
(2.11) we have the sum of the terms of the descending geometric progression, which, as we 
know from the school mathematics course, is equal to its first term divided by one, minus the 
denominator, that is, minus the number by which you need to multiply the previous term of 
the geometric progression to get the next one. 

Since, as we have already noted, the point on the numerical axis has no width, the value 
can also be set in the vicinity of zero, and therefore, taking into account expressions (2.5) and 
(2.11), we obtain  

  ( ) 02liminf 0
1

=== ∑
∞

=

∗ εα ε
i

iRm  (2.12) 
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The set R  of irrational numbers given on the segment [0,1], which complements the set 
R of rational numbers to the set Z of real numbers on this unit segment of the number axis, as 
we already know from the previous subsections, like the set of real numbers, also has the 
power of the continuum c, as a result of which is that the Lebesgue measure of the set R  of 
irrational numbers is also the length of the segment, that is, 

  1=Rm  (2.13) 

And on the basis of expressions (2.7) and (2.8) and expression (2.13), we have the right 
to write that 

  CRmRmRmRm ∗
∗

∗ ==== 1   (2.14) 

Taking into account expression (2.14), we obtain from expression (2.6) 

  0111 =−=−= ∗
∗ CRmRm . (2.15) 

So it follows from expressions (2.7), (2.12) and (2.15) that the Lebesgue measure of the 
set R of rational numbers on the segment [0,1] is zero, and in connection with the enumerated 
set of such segments on the entire number axis, this set is zero-dimensional is also on the 
entire numerical axis. 

And as a consequence of the considerations given above, the following definition 
follows: a set E is zero-dimensional according to Lebesgue, if for any 0>η  it can be covered 
by a finite or countable system of intervals with a total length less than η . 

It follows from this definition that any set whose elements are individual points, 
regardless of whether their number is determined by a specific number or whether these 
points are the same as the numbers of the natural series, belongs to the zero-dimensional 
class, that is, to the dimensional class, but with a Lebesgue measure equal to zero. And this, in 
turn, means that if any function given on a segment [ ]ba,  has on this segment no more than a 
countable set of points in which the function tolerates discontinuities of the 1st kind, then the 
set of discontinuities of this function is zero-dimensional. 

It follows from Lebesgue's definition of the concepts of set and measure that: 
1) if the sets 21, EE  are Lebesgue measurable, then the sets 212121 ,, EEEEEE −∩∪  

are also Lebesgue measurable; 
2) if the sets 21, EE  are Lebesgue measurable and have no common interior points, then 

  ( ) ;2121 EmEmEEm +=∪   (2.16) 

3) if the sets 21, EE  are Lebesgue measurable and ,21 EE ⊃  then 

 ( ) ;2121 EmEmEEm −=−  (2.17) 

4) if the set E is given in a limited region of the plane, which is a two-dimensional 
space, then by placing each of its points xi in an open rectangle with the area 2

iα  and applying 
the procedure described above for the set whose points are located on the segment of the 
number axis, we will arrive at the numbers that will determine the external and the internal 
Lebesgue measure of the set E on the plane, which lead to the determination of the Lebesgue 
measure of this set E in two-dimensional space; 

5) if the set E is given in a limited area of three-dimensional space, then by placing each 
of its points ix  in an open cube of volume 𝛼𝑖3 and applying the procedure described above for 
the set whose points are located on the segment of the numerical axis, we will arrive at the 
numbers that will determine the external and the internal measure of the Lebesgue set E in 
three-dimensional space, which lead to the determination of the Lebesgue measure of this set 
E in this space. 



32 

An important note: after Lebesgue introduced his definition of the concept of 
measure on a set or in space, in almost all mathematical studies related to the 
application of the concept of measure, Lebesgue's measure is used, so mathematicians 
agreed, when using the term “measure”, not to indicate every time that this is 
Lebesgue's measure, and understanding that this is so and without mentioning this 
surname next to this term. 

Now let's extend the notion of measure to functions ( )xf  of a real variable defined on 
the measurable sets of its argument x. 

Definition: A function ( )xf  of a real variable x defined on the measurable set E  
of values x of its argument belongs to the class of measurable functions, if for any 
number A the subset EEA ⊂ for all elements x  of which ( ) Axf >  is measurable.  

We draw attention to the fact that the dimensionality of a function is determined by the 
dimensionality of the set of values of its argument. So, if even the set of all values of a 
function's argument has measure zero, that function will belong to the dimension class. And 
therefore, as a consequence of this definition of the dimensionality of the function, we have: 

1) a function ( )xf  that is continuous on a closed bounded set ( )∞∞−⊂ ,E  of its 
argument x  is measurable on this set; 

2) the sum, difference, and product of two dimensional functions ( ) ( )xgxf ,  given on 
the dimensional set E  of its argument x  is a measurable function on this set, and the quotient 
from the division of one dimensional function by another dimensional function is also a 
measurable function, except for the case when the function that is the divisor is zero at any of 
the points Ex∈ ; 

3) lattice function [ ] ( ) ,xkxxfxkf ∆==∆ generated by a continuous function ( )xf  by 
taking into account its values only on a discrete set { }xkE ∆=  of values of the argument x , 
where  −∆x the sampling interval a belongs ,,...,2,1,0 nk =  to the class of dimensional 
functions, since it is defined on a zero-dimensional set E ; 

4) if two dimensional functions ( ) ( )xgxf , , are given on a measurable set E , then the 
subset EE ⊂> ,with points >∈Ex  of ( ) ( )xgxf >  is also measurable; 

5) a continuous measurable function ( )xf  defined on the measurable set E  of its 
argument x  has the C-property on this set if for any number 0>ε  there exists such a closed 
subset EF ⊂ , for which the inequality holds 

 ( ) ;m E F ε− <   (2.18) 

6) if a function ( )xf  is defined on a measurable set E  with a measure less than infinity, 
and at all points of the set E , with the possible exception of some zero-dimensional subset, 
has values less than infinity, then for this function to be measurable, it is sufficient that it has 
the C-property on this set. 
 
 

2.2 Riemann and Stieltjes integrals 
 

First, consider the Riemann integral. This integral is one of the main concepts of 
mathematical analysis, which is studied in the course of higher mathematics according to the 
curriculum of any specialty of non-mathematical specialization, therefore, in the textbook on 
functional analysis, which is a superstructure on mathematical analysis, we will only recall it, 
and then compare it with he further introduced the Stiltjes and Lebesgue integrals according 
to the program of functional analysis. 
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So, let a continuous and bounded function ( )xf  be given on the numerical axis on the 
segment [ ]ba,  of the argument x values. Let us divide this segment by points nxxxx ,...,,, 210 , 
and so that ax =0  and bxn = , on n  segments nixi ,...,2,1, =∆ , such that 

 nixxx iii ,...,2,1,1 =−=∆ −  (2.19) 

Let us denote the internal point iξ  of the segment by xi∆ , that is, let xii ∆∈ξ . Since the 
function ( )xf  is continuous and bounded, it will acquire a maximum iM  and a minimum im  
numerical value on each segment xi∆  at some of its internal points or on its boundaries, that 
is, we will have 
 ( ) niMfm iii ,...,2,1, =≤≤ ξ  (2.20) 

Multiply all terms of inequality (2.20) by xi∆  and sum these products, resulting in 

 ( ) ∑∑∑
===

∆≤∆≤∆
n

i
ii

n

i
ii

n

i
ii xMxfxm

111
ξ  (2.21) 

Sums 

 ∑
=

∆=Σ
n

i
ii xM

1
max , (2.22) 

 ∑
=

∆=Σ
n

i
ii xm

1
min  (2.23) 

are called, respectively, the upper and lower sums of Darba. It is quite obvious that when 
reduced xi∆  to zero, the superscript n in the Darboux sums will approach infinity, and these 
sums themselves will approach a common limit in the form of a number from above and 
below 

 ( )∑
∞→

=
∆ ∆=

n

i
iix xfJ

i
1

0lim ξ , (2.24) 

which is called the Riemann integral and denoted 

 ( )∫=
b

a

dxxfJ . (2.25) 

Since the operation of finding the sum is linear, for which it is true that 

 ( ) ( ) ( )∑ ∑ ∑
∞

= =

∞

+=

∆+∆=∆
1 1 1i

n

i ni
iiiiii xfxfxf ξξξ , (2.26) 

then the integration operation is also linear, for which it is true that 

 ( ) ( ) ( )∫ ∫ ∫
∗

∗

+=
b

a

a

a

b

a

dxxfdxxfdxxf , (2.27) 

if ],[ baa ∈∗ . 
Proceeding from the fact that each component xmxM iiii ∆∆ ,  in the Darboux sums 

(2.22), (2.23) determines the area of a rectangle with base xi∆  and height iM  and im , 
respectively, the Riemann integral, which is a definite integral belonging to the class of 
functionals, can be geometrically interpreted as an expression which is used to determine the 
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area of a flat figure bounded from the bottom by the segment [ ]ba,  of the number axis, and 
from the top by the graph of the function ( )xf  in the range from ( )af  to ( )bf . 

And now let's move on to the consideration of the Stiltjes integral. 
From the above, it is easy to see that we constructed the Riemann integral (2.25), which 

is one of the basic concepts of mathematical analysis, not using the measure theory in an 
explicit form, but using the upper (2.22) and lower (2.23) Darboux sums, to which we applied 
boundary transition. 

It turns out that in the same way it is possible to construct another class of integrals that 
entered mathematics under the name of the Dutch mathematician Stiltjes, who created their 
theory in response to a request from the theory of probabilities. 

The main difference between the Stiltjes integral and the Riemann integral is that in the 
Riemann integral, the integration over a segment [ ]ba,  of a function ( )xf  is carried out using 
the increments of its argument dx  on the same segment of the numerical axis, and in the 
Stiltjes integral, the integration over a segment [ ]ba,  of the function ( )xf  is carried out using 
the increments )(xdg  of another function ( )xg  specified on the same segment of the number 
axis, and the integrated function ( )xf  itself is called integrated over the function ( )xg  on the 
segment [ ]ba,  of the number axis. 

Symbolically, Stiltjes' integral is written as follows: 

 ( ) ( )∫=
b

a

xdgxfS .  (2.28) 

The algorithm for constructing the integral (2.28), proposed by Stiltjes, differs from the 
algorithm for constructing the Riemann integral only in details, because first, as in the 
Riemann algorithm, it is proposed to set a continuous and bounded function ( )xf  on the 
numerical axis on the segment [ ]ba,  of the argument x  values and to divide this segment 
into points nxxxx ,...,,, 210  so that ax =0  and bxn =  on n  segments nixi ,...,2,1, =∆ , each of 
which is determined by expression (2.19). 

If we mark the internal point of the segment xi∆  with the symbol iξ  since function f(x) 
is continuous and limited, on each segment  x… in some of its internal points or on its bounds 
it equired maximum M and minimal m of the digital values, and the expression (2.20 ) will be 
valid for it.  

Then we consider the bounded function ( )xg  given on the same [ ]ba,  segment, on 
which we do not impose the continuity condition and for which on each segment given by the 
expression (2.19), we find the increases 

 ( ) ( ) nixgxgg iii ,...,2,1,1 =−=∆ − . (2.29) 

Multiplying all terms of inequality (2.20) by gi∆  and summing up these products, we 
receive 

 ( ) ∑∑∑
===

∆≤∆≤∆
n

i
ii

n

i
ii

n

i
ii gMgfgm

111
ξ . (2.30) 

Sums 

 ( ) ( )( )∑ ∑
= =

−−=∆=Σ
n

i

n

i
iiiii

s xgxgMgM
1 1

1max , (2.31) 

 ( ) ( )( )∑ ∑
= =

−−=∆=Σ
n

i

n

i
iiiii

s
msn xgxgmgm

1 1
1  (2.32) 
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are called, respectively, the upper and lower Darboux-Stiltjes sums. It is quite obvious that 
when decreasing xi∆  to zero, the superscript n in the Darboux-Stiltjes sums will approach 
infinity, and these sums themselves, due to the limitation of increments (2.29), will approach 
a common limit from above and below in the form of a number 

 ( ) ( ) ( )( )∑
∞→

=
−∆ −=

n

i
iiix xgxgfS

i
1

10lim ξ , (2.33) 

which is called the Stiltjes integral and is written in the form (2.28). 
It follows from the very definition of the Stiltjes integral that: 

1) ( ) ( ) ( ),agbgxdg
b

a

−=∫  (2.34) 

2) ( ) ( ) ( ) ( )∫ ∫ =∀=
b

a

b

a

constkxdgxfkxdgxkf ,,  (2.35) 

3) ( ) ( ) ( ) ( ) ( ) ( ) [ ],,, baaxdgxfxdgxfxdgxf
b

a

a

a

b

a

∈∀+= ∗∫ ∫ ∫
∗

∗

  (2.36) 

4) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫±=±
b

a

b

a

b

a

xdgxfxdgxfxdgxfxf ,2121   (2.37) 

5) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )∫ ∫ ∫±=±
b

a

b

a

b

a

xdgxfxdgxfxgxgdxf 2121 .  (2.38) 

 
 

2.3 The Lebesgue integral 
 

When mathematicians saw that there are functions that do not integrate after Riemann, 
they began to search for such a generalization of the concept of the definite integral, with the 
help of which these functions could also be integrated. And such a generalization was 
achieved by Lebesgue, who proposed that the increment of the coordinate, by which the 
integration of the function ( )xfy =  given on the segment [ ]ba,  is carried out, be determined 
not along the axis of the argument x, but along the functional axis y, because in this case, even 
when the coordinate x is set on a zero-dimensional set E  of a finite or countable quantity 
points on the x axis, the coordinate y will be an element of the set of real numbers on the 
segment [m,M] of the y axis, the measure of which is its length, and the left border of which 
is the real number m , which is the minimum value of this function on the segment [ ]ba, , and 
the right border is the real number M, which is the maximum value of this function on the 
same segment [ ]ba, . 

Lebesgue constructed his integral by putting forward the condition that the measurable 
and limited by the lower m and upper M values function ( )xfy = , given on the segment 
[ ]ba,  of the axis x, was defined on the set E with measure 

  ( )MymmE <≤ .  (2.39) 

He suggested to devide the segment [m, M] of the axis y into points 

  Myyyyyym nii == − ,...,,,...,,, 1210   (2.40) 

into n segments [ ]ii yy ,1− , ni ,...,2,1= , marking the maximal of them 
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  [ ]ii yy ,max 1−=α ,  (2.41) 

and making up the sum 

 ( )∑
=

−− <≤=Σ
n

i
iiii yyymEy

1
11 , (2.42) 

using the fact that, according to property (2.16), measures 

  ( ) ( )∑
=

− <≤=<≤
n

i
iii yyymEMymmE

1
1 . (2.43) 

The limit of the sum (2.42) when even the maximum of the segments defined by the 
expression (2.41) approaches zero 

  ( )∑
=

−− <≤=Σ=
n

i
iiii yyymEyL

1
1100 limlim αα ,  (2.44) 

which has all the properties of an integral, Lebesgue introduced into mathematics as a 
new interpretation of the definite integral, which other mathematicians named after him 
the Lebesgue integral, and the sum (2.42) was called the Lebesgue integral sum on the 
set E with the measure determined by the expression (2.39). 

If, using the property of monotonicity of the measure, write ( )iii yyymE <≤−1  for the i-
th segment in the form 

        ( ) ( ) ( ) ( ) ( )yymEyymEyymEyymEyyymE iiiiiiiiiii ≥−>=≥+>=<≤ −−− 111 , (2.45) 

and substituting expression (2.45) into expression (2.44), we obtain the Lebesgue integral in 
the form 

       ( ) =<≤= ∑
=

−−

n

i
iiii yyymEyL

1
110limα . ( ) ( )∑

=
−− >−>

n

i
iiiii yymEyymEy

1
110 }{limα . (2.46) 

Since the measure imE  is a monotone function, we denote it by the symbol g,-coordinate 
y, then we can write that 

  
( ) ( )
( ) ( )

( ) ( )







−=∆
=≥

=>

−

−−

1

11 ,
,

iii

iii

iii

ygygg
ygyymE

ygyymE
  (2.47) 

Substituting expressions (2.47) into (2.46), we get 

  ( ) ( )∑
=

−− −=
n

i
iii ygygyL

1
110 }{limα ∑

=
− ∆=

n

i
ii gy

1
10limα . (2.48) 

Analyzing the right-hand side of the expression (2.48), we see that it is the Stieltjes 
integral of the function y  by function ( )yg  on the segment [m,M], which is the measure of 
the function y, and therefore the expression (2.48) can be written as follows: 

 ( )∫=
M

m

yydgL . (2.49) 

By reducing the Lebesgue integral (2.44) to the Stieltjes integral (2.49), we actually 
proved that the limit of the Lebesgue integral sum (2.42) exists, so the expression (2.44) really 
satisfies the requirements that the definite integral must satisfy. 
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We draw attention to the fact that if the function of the measure by the coordinate y on 
the segment [m, M] in the projection onto the segment [ ]ba,  of the axis x is not only 
monotonic, but also linear, that is, if 

  ( ) xyg = , (2.50) 

then the expression (2.49) turns into the expression 

 ( ) ( )∫∫ ==
b

a

M

m

dxxfyydgL . (2.51) 

That is, in this case, the Lebesgue integration on the axis y segment [m, M] and the 
Riemann integration on the axis x segment [ ]ba,  give the same result, which also connects the 
Riemann integral with the measure theory, since the Riemann integration over x is an 
integration over the measure of the segment [a,b ]. 

 
 
 

2.4 Programs for implementing integrals in the Python language 
 

The program for calculating the Riemann integral in case when the limits of 
integration are real numbers, for example, the limits of the range [0,1], when the body of 
the function is specified directly, when it is specified parametrically, and also in the case 
of using a lambda function with specified numerical values of parameters. 

(Program 8): 
In [1]: import scipy 
In [2]: from scipy.integrate import quad 
In [3]: import numpy as np 
In [4]: def f(x): 
                return np.exp(-x)**2*np.cos(x)**3 
In [5]: q1=quad(f,0,1);q1 
Out[5]: (0.3398620054810545, 3.773226e-15) 

In [6]: def f(x,a3,a2,a1,a0): 
                return a3*x**3+a2*x**2+a1*x+a0 
In [7]: q2=quad(f,0,1,args=(4,3,2,1));q2 
Out[7]: (4.0, 4.440892098500626e-14) 
In [8]: q3=quad(lambda x: f(x,4,3,2,1),0,1);q3 
Out[8]: (4.0, 4.440892098500626e-14) 

End of program 8. 
 

 
 

Python program for calculating the Steeltjes integral from the function  
f(x) = 𝒙𝟑 + 𝟑𝒙𝟐 − 𝟐𝒙 − 𝟒 by the function g(x)=2exp(x)-3x of the real variable x specified on 
the interval [0,2 ] discretely through the interval ∆𝒊𝒙 = 𝒙𝒊 − 𝒙𝒊−𝟏= 0.1; i = 1,2,...,20 

(Program 9): 
In [1]: import numpy as np 
In [2]: x=np.linspace(0,2,21)  
In [3]: def f(x): 
               return x**3+3*x**2-2*x-4  
In [4]: fvec=np.vectorize(f) 
In [5]: f1=fvec(x);f1 
Out[5]:  
array([-4.   , -4.169, -4.272, -4.303, -4.256, 

-4.125, -3.904, -3.587, -3.168, -2.641,  
-2. , -1.239, -0.352, 0.667, 1.824, 3.125, 
 4.576, 6.183, 7.952, 9.889, 12. ]) 

In [6]: g=lambda x: 2*np.exp(x)-3*x 
In [7]: gvec=np.vectorize(g) 

In [8]: g1=gvec(x);g1  
Out[8]:  
array([2.        , 1.91034184, 1.84280552,  

1.79971762, 1.7836494 , 1.79744254,  
1.8442376 , 1.92750541, 2.05108186,  
2.21920622, 2.43656366, 2.70833205,  
3.04023385, 3.43859334, 3.91039993, 
4.46337814, 5.10606485, 5.84789478,  
6.69929493, 7.67178888, 8.7781122]) 

In [9]: g11=np.diff(g1);g11  
Out[9] 
array([-0.08965816, -0.06753632, 
          -0.0430879, -0.01606822,  0.01379315, 
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           0.04679506, 0.08326781, 0.12357644, 
           0.16812437, 0.21735743, 0.27176839, 
           0.3319018 ,  0.39835949, 0.4718066 , 
           0.55297821, 0.64268671, 0.74182993, 
           0.85140015,0.97249396,1.10632331]) 
In [10]: f11=f1[:-1];f11 
Out[10]: 
array([-4. ,-4.169,-4.272, -4.303, -4.256, -4.125, 
           -3.904,-3.587,-3.168,-2.641,-2. , -1.239, 
           -0.352, 0.667,1.824,3.125, 4.576, 6.183, 
            7.952,  9.889]) 

In [11]: s1=f11*g11;s1 
Out[11]: 
array([ 0.35863266,  0.28155892,  0.18407151, 
            0.06914155,-0.05870363,-0.19302962, 
           -0.32507755, -0.4432687, -0.53261799, 
           -0.57404098,-0.54353678, -0.41122633, 
           -0.14022254, 0.314695, 1.00863225, 
            2.00839596, 3.39461378 5.2642071, 
            7.73327194, 10.94043125]) 
In [12]: S=s1.sum( );S 
Out[12]: 28.33592779370339 

 
       End of program 9 

 

 

A Python program for calculating the Lebesgue integral from the function 
f(x) = 𝒆−𝒙𝒔𝒊𝒏𝟐𝒙 of the real variable x given on the segment [0,3] discretely at points 
through the interval  ∆𝒊𝒙 = 𝒙𝒊 − 𝒙𝒊−𝟏= 0.15;    i = 1,2,...,20 

(Program 10): 
In [1]: import numpy as np 
In [2]: x=np.linspace(0,3,21) 
In [3]: def f(x): 
              return np.exp(-x)*np.sin(3*x) 
In [4]: fvec=np.vectorize(f) 
In [5]: f1=fvec(x);f1 
Out[5]:  
array([ 0.        ,  0.3743783 ,  0.58030285,  
           0.62214868,0.53445891,0.36753575, 
           0.17375969,-0.00294201,-0.1332846, 
          -0.20441749,-0.21811645,-0.1866539, 
          -0.12773711,-0.05972154,0.00205897, 
           0.0474343,0.07199992,0.07646286,  
           0.06518194,0.0443898,0.02051817]) 
In [6]: M=max(f1);M 
Out[6]: 0.6221486811452028 
In [7]: m=min(f1);m 
Out[7]: -0.21811645170452654 
In [8]: mEf=M-m;mEf 
Out[8]: 0.8402651328497294 
In [9]: f11=np.sort(f1);f11 
Out[9]:  
array([-0.21811645, -0.20441749, -0.1866539 , 
           -0.1332846,-0.12773711,-0.05972154, 
           -0.00294201,  0.        ,  0.00205897,  
            0.02051817,0.0443898,0.0474343,  
            0.06518194,0.07199992,0.07646286, 
            0.17375969,0.36753575,0.3743783 ,  
            0.53445891,0.58030285,0.62214868]) 
In [10]: g=np.diff(f11);g 
 

Out[10]: 
array([0.01369896, 0.0177636 , 0.0533693 , 
           0.00554749, 0.06801557, 0.05677952, 
           0.00294201, 0.00205897, 0.0184592 , 
           0.02387163, 0.0030445 , 0.01774765, 
           0.00681798, 0.00446294, 0.09729683, 
           0.19377606, 0.00684255, 0.16008061, 
           0.04584394, 0.04184583]) 
In [11]: f111=f11[:-1];f111 
Out[11]: 
array([-0.21811645, -0.20441749, -0.1866539 , 
           -0.1332846 ,-0.12773711,-0.05972154, 
           -0.00294201,  0.        ,  0.00205897, 
            0.02051817, 0.0443898 ,  0.0474343, 
            0.06518194,0.07199992,0.07646286, 
            0.17375969, 0.36753575, 0.3743783, 
            0.53445891, 0.58030285]) 
In [12]: l1=f111*g;l1 
Out[12]: 
array([-2.9879683e-03,-3.6311899e-03, 
           -9.96158766e-03, -7.39394368e-04, 
           -8.68811299e-03, -3.39096030e-03, 
           -8.65544179e-06,  0.00000000e+00, 
            3.80069447e-05,  4.89802141e-04, 
            1.35144637e-04,  8.41847084e-04, 
            4.44409318e-04,  3.21331035e-04, 
            7.43959408e-03,  3.36704688e-02, 
            2.51488210e-03,  5.99307062e-02, 
            2.45017000e-02, 2.42832565e-02]) 
In [13]: L=np.sum(l1);L 
Out[13]: 0.1252032798312037 

 
End of program 10 
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2.5 Self -Testing Task 

 
1. Give a definition of the concept of “measure”. 
2. How to determine the measure of Lebesgue and what are its properties? 
3. What is a zero-dimensional set? 
4. Define a measuring function. 
5. Write down the expressions for the lower and upper Sumy Darb. 
6. Give a definition of Riman's integral. 
7. Write down the expressions for the lower and upper Sumy Darb-Siltyes. 
8. Give a definition of the Stiltjes ' integral. 
9. Under what condition can Riman integral be obtained from the integral integral? 
10. Give a definition of the integral. 
11. What is the connection between the integals of Lebeg and the Stiltjes ? 
12. Under what conditions are Riman and Lebeg integrated to give the same result? 
13.What feature in the program is performed by the command fvec=np.vectorize(f) 
14.What is the program g=lambda x: 2*np.exp(x)-3*x? 
15.What does the program g11=np.diff(g1)? 
16.What we reach the command f11=f1[:-1]? 
17.What is the implementation of the team f11=f1[:-1]? 
18.Toe command in the program that calculates the integral of the Stiltjes  
19.The in the results of the program both vectorized functions 
20. Say in the results of the program the numerical value 
21.What does the program require f11=np.sort(f1)? 
22.What we reach the command f111=f11[:-1]? 
23.What gives us the implementation of the l1=f111*g? 
24. Show in the results of the program the numerical value of the Lebesgue integral. 
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Chapter 3. FUNCTIONALS AND METHODS OF SEARCHING FOR THEIR 

UNCONDITIONAL EXTREMUMS 
 

3.1 Functionalities used in applied IT tasks 
 

As we have already defined in the introduction, a functional is a law according to which 
a set of functions is matched to a set of numbers. 

We will also recall that the final stage of the system analysis of a complex object is its 
optimization, which consists in finding such parameters of this object, according to which its 
initial coordinate or its spatial structure are characterized in the best way according to the 
indicators chosen as a measure of this “bestness”. It is these indicators, the internal 
components of which are functions that characterize the spatial structures of complex objects 
or processes in them, and the external components are numbers that characterize the “best” of 
these spatial structures or processes, as a rule, are functionals, among which in general of 
functional analysis methodologies in its application in the form of calculus of variations, the 
most common are: 
1) functional 
 𝐽𝑦𝐹 = ∫ 𝐹(𝑥,𝑦,𝑦 ′) 𝑑𝑥𝑏

𝑎 , (3.1) 

where ( )yyxF ′,,  is a mathematical expression, which is a construction of an independent 
variable x, its function ( )xy  and the first derivative ( )xy′  of this function; at the same time, 
the segment [ ]ba,  is the domain of setting the function ( )xy , i.e., [ ]bax ,∈  ; 
2) functional 

 ( )( ), , , , ,
b

n

a

J F x y y y y dx′ ′′= ∫  , (3.2) 

which connects not only the function ( )xy   and its derivative ( )xy′ , as in the case of (3.1), 

but also older derivatives ( ) ( ) ( ), , ny x y x′′
 ; 

3) functional 

 ( )1 2 1 2, , , , ; , , ,
b

n n
a

J F x y y y y y y dx′ ′ ′= ∫   , (3.3) 

which connects the set of functions ( ) ( ) ( ){ }1 2, , , ny x y x y x

, defining a surface in  

n-dimensional space and the set of first derivatives ( ) ( ) ( ){ }1 2, , , ny x y x y x′ ′ ′


 of these 
functions in the same space. 

The study of the conditions under which these functionals acquire extreme values is 
carried out within the framework of functional analysis, which is called calculus of variations, 
and the functions on which these functionals acquire extreme values are called extremals. 
 
 

3.2 Classical problem of calculus of variations, necessary and sufficient conditions 
for the existence of an unconditional extremum of the functional 
 

The set of methods for finding extrema of functionals of various types, from the 
number we have given in the first subsection of this section, constitutes the essence of 
calculus of variations, to understand the basics of which we will conduct research on the 
extremum of the functional (3.1). 
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But, before determining the conditions under which the functional (3.1) will acquire an 
extreme value, let us clarify what we mean by the concepts of absolute and relative extrema of 
the functional, and what we mean by the concept of a weak relative extremum of the 
functional. 

By analogy with how global and local extrema are determined for a function, absolute 
and relative extrema are determined for a functional, the first of which specifies the largest (or 
smallest) value of the functional on the entire set of functions on which this functional is 
specified, and the second specifies the largest (or the smallest) value of a functional on a 
subset of close functions that are only a part of the entire set of functions on which this 
functional is defined. 

In turn, strong and weak are distinguished among relative extremes. 
To unify the approaches, it was agreed to consider that a strong relative minimum of the 

functional is reached at the extremal , if its value on this curve in the given range 
 of values of the argument x is smaller than on all other curves   of the 

given class of functions, the zero-order distance 

  (3.4) 

to which  is small.  It is obvious that a strong relative maximum of the functional will be 
reached at the extremal of the same class of curves, if its value is the largest in the given range 
of values of the argument. 

If the relative minimum (or maximum) of the functional is reached at the extremal, the 
distance is of the first order 

 , (3.5) 

from which to all other curves of this class of functions is small, then a weak relative 
minimum (or maximum) occurs at this extreme. 

Note that in expression (3.5), the symbols denote the first derivatives ,  of 
the functions , . 

It is clear that the absolute extremum is at the same time relative, and the strong 
relative extremum is at the same time weak. 

And therefore, if some condition must be fulfilled with respect to a weak relative 
extremum, then it must be true for both a strong relative extremum and an absolute one. 

Having dealt with the above concepts, we will determine what conditions the function 
, must satisfy in order for it to have a weak relative minimum of the functional (3.1). 

To find these conditions, we assume that this weak relative minimum of the functional 
(3.1) on the function  is reached. 

This assumption gives us the right to assume that the value of the functional (3.1) on 
any other function, for example, , where  is a number and  is 
an arbitrary smooth function for which 
 , (3.6) 

will not be less than   , i.e., 

 . (3.7) 

Since the definite integral after integration and substitution of boundaries is converted 
into a number, the value of the increment of the functional, which is given by the difference 
(3.7) of the definite integrals, will depend only on the value of the parameter , that is, this 
increment becomes a continuous function, in which the independent variable is  

( )ef x
[ ],a b ( ), 1, ,if x i n= 

0 max ( ) ( ) , 1, ,e if x f x i n∆ = − = 

1 max ( ) ( ) , 1, ,e if x f x i n′ ′∆ = − = 

( )ef x′ ( )if x′
( )ef x ( )if x

( )y y x=

( )y y x=

( ) ( ) ( )y x y x xη α η= + ⋅ α ( )xη

( ) ( ) 0a bη η= =

( )y y x=

( ) ( ) ( ), , , , 0
b b

F F F
y y y

a a

J x y y dx F x y y dx J Jαη αη α′ ′ ′∆ = + + − = − ≥∫ ∫

α
α
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 . (3.8) 

As you know from the course of mathematical analysis, a continuous function around 
any value of its argument, in particular zero, can be expanded into a Taylor series. For the 
function (3.8) around the point , this series will have the form: 

  . (3.9) 

The first and second members of the series (3.9), i.e.  and 
 

, 

are called, respectively, the first and second variations of the functional  and are denoted 

by
 

 and . 

Since the independent variable  enters the second variation  in the square, then 
at values close to zero, the second variation becomes much smaller than the first variation 

, which is included  in the first degree. And this, in turn, gives us the right to assume 
that the point is around  

 . (3.10) 

It follows from the expressions (3.7)-(3.10) that 

 .  (3.11) 

It is clear that for arbitrary values  (both bigger and less than zero), the expression 
(3.11) in the vicinity of the point  is fulfilled only in one case, when 

 , (3.12) 

or 

 . (3.13) 

Since the operations of differentiation and integration are linear, they can be 
interchanged, i.e. (3.13) can be rewritten as follows: 

 . (3.14) 

Taking the derivative of in  the integrand expression (3.14), by the rule of 
differentiation of a complex function we will have 

 , (3.15) 

or 

 . (3.16) 

( ) ( )F F F F
y y y yJ J J Jα α∆ = ∆ = −

0α =

( ) ( ) ( ) ( )2 32 3

2 32! 3!

F F F
y y yF

y

dJ d J d J
J

d d d
α α αα αα α

α α α
∆ = ⋅ + ⋅ + ⋅ +

( )F
ydJ
d
α

α
α

⋅
( )22

22

F
yd J

d
αα

α
⋅

F
yJ

F
yJδ 2 F

yJδ
α 2 F

yJδ

F
yJδ α

0α =

( )F F
y yJ Jα δ∆ ≈

( )
0

F
ydJ
d
α

α
α

⋅ ≥

α
0α =

( )
0

F
ydJ
d
α

α
=

( ), , 0
b

a

d F x y y dx
d

αη αη
α
 

′ ′+ + = 
 
∫

( ), , 0
b

a

d F x y y dx
d

αη αη
α

′ ′+ + =∫
α

( ) ( ) 0
b

a

d y d yF F dx
y d y d

αη αη
α α

′ ′+ + ∂ ∂
⋅ + ⋅ = ′∂ ∂ 

∫

0
b

a

F F dx
y y
η η ∂ ∂ ′⋅ + ⋅ = ′∂ ∂ 

∫
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The expression (4.31) is inconvenient for analysis, since its first component includes the 
function  itself, and its derivative  is included in the second. You can get rid of 

the derivative   by taking the integral of the second component of the expression by 
parts. To simplify notation, we will denote partial derivatives as follows: 

 










=
′∂′∂

∂
=

∂′∂
∂

=
∂′∂

∂

=
′∂

∂
=

∂
∂

=
∂
∂

′′′′

′

yyyyxy

yyx

F
yy

FF
yy

FF
y

F

F
y
FF

y
FF

x
F

222

,,
x

,,,
 (3.17) 

Taking the integral in the second component of equation (3.16), that is, the integral 

 , (3.18) 

using the method of integration by parts, we will have 

 .  (3.19) 

Considering (3.19), equation (3.16) can be rewritten as follows: 

  ,    (3.20) 

Or 

 . (3.21) 

Analyzing the obtained integral equation (3.21), we see that for an arbitrary smooth 
function  it is necessary that it be performed 

 . (3.22) 

This is Euler's well-known equation, which he derived in 1744 by transforming the 
functional into a function of many variables followed by its minimization. 

Summarizing all of the above, it can be asserted that in order for the function  to 
deliver a weak relative minimum of the functional (3.1), it must be a solution of the Euler 
equation (3.22). In this case, the function  is called the extremal of the functional. 

Calculus of variations is actually based on the use of Euler's equation in different 
interpretations. 

The existence of a solution of the Euler equation for an extremal is a necessary 
condition for the minimum or maximum of the functional (3.1) to be reached on it. But, 
as in the case of the extremum of a function , the necessary conditions for the extremum 
of a functional must necessarily be supplemented with sufficient conditions, with the help of 
which one can recognize both those functions on which the maximum or minimum of the 
functional is reached, and those on which, despite the fulfillment of the necessary conditions, 
the functional does not reach the extremum. 

( )xη ( )xη′

( )xη′

b b

y
a a

F dx F dx
y

η η′
∂ ′ ′⋅ = ⋅
′∂∫ ∫

b b

y y
a a

dF dx F dx
dx

η η′ ′′⋅ = − ⋅∫ ∫

0
b

y y
a

dF F dx
dx

η η′
 ⋅ − ⋅ = 
 ∫

0
b

y y
a

dF F dx
dx

η′
 − ⋅ = 
 ∫

( )xη

0y y
dF F
dx ′− =

( )y x

( )y x

( )y x
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To determine the sufficient conditions for the extremum of the functional (3.1), let us 
return again to the Taylor series expansion (3.9) of the increment of the functional . 

As already indicated above, in the vicinity of the point  due to the fulfillment of 
the condition (3.12), the first variation  approaches zero, therefore the increase of 

the functional is determined by the second variation , since the other terms of the 
Taylor series approach zero faster than the second variation due to higher, but close to zero, 
degrees . 

It is clear that in the case of a minimum of the functional, both the increase of the 
functional  around the point , and its second variation , will not be 
less than zero, because at the point  of the minimum, the value of this functional is the 
smallest and any displacement from this point will either not lead to a change in the value of 
the functional, or lead to the growth of its value. 

So, heuristically, the minimum of the functional (3.1) is reached at the extremal y(x), for 
which the expression 

  , (3.23) 

where,( we remind)  

 . (3.24) 

By analogy, we conclude that the maximum of the functional (3.1) is reached at the 
extremal , for which the expression 

 . (3.25) 

Since expressions (3.23), (3.25) are included in the square according to expression 
(3.24), the signs of these inequalities are determined exclusively by the signs  of the second 
derivative of the functional increment, which can be written as follows: 

  (3.26) 

In order to obtain the square of the function , in the middle term on the right-hand 
side of expression (3.26), which will facilitate the analysis of expression (3.26) as a whole, 
let's take the integral of this middle term by parts. After substituting the value obtained by 
integration by parts of the integral into expression (3.26), we obtain 

 . (3.27) 

We remind that that the auxiliary function  is arbitrary, and therefore it can be 
taken as shown in Fig.4. 

( )F
yJ α∆

0α =
( )F

yJδ α

( )2 F
yJδ α

α

( )F
yJ α∆ 0α = ( )2 F

yJδ α
0α =

( )2 0F
yJδ α ≥

( )
22

2
22

F
yF

y

d J
J

d
αδ α

α
=

( )y x

( )2 0F
yJδ α ≤

α

( )

( )

( ) ( )( )

2 2

2 2

2

2

22

, ,

, ,

.

F b
y

a

b

a
b

yy yy y y y y
a

d J d F x y y dx
d d

d F x y y dx
d

F F F F dx

αη αη
α α

αη αη
α

η ηη η′ ′ ′ ′

 
′ ′= + + = 

 

′ ′= + + =

′ ′= + + ⋅ +

∫

∫

∫
η

( ) ( )
2

22
2

F b
y

yy yy y y
a

d J dF F F dx
d dx

α
η η

α ′ ′ ′
   ′= − +    ∫

( )xη



45 

  
Figure 4 – Graph of the auxiliary function  for the expression (3.27) 

 
With such a choice, we will have numerically close to zero values  and hundreds of 

times larger values . Therefore, the sign of expression (3.27) will be completely 

determined by the sign of the coefficient at , that is, the sign at . 
Based on the expressions (3.23), (3.25) and all of the above, it can be asserted that the 

minimum of the functional (3.1) is reached at the extremal  within the limits , 
if for all  we have 

 , (3.28) 

and maximum if – 
 . (3.29) 

Conditions (3.28), (3.29) are sufficient conditions for reaching the extremal  
within the extremum of the functional (3.1).  

These conditions are often called Legendre's conditions, after the mathematician 
who derived them. 
 
 

3.3 Euler's equation and its analysis 
 

Let's write Euler's equation (3.22), using the formula of the complete derivative of the 

function of three variables when differentiating the component . We will get 

  , (3.30) 

or 
 . (3.31) 

From the expression (3.31), it is clear that the Euler equation is a nonlinear differential 
equation of the second order, for which there is no single method of solution. 

An important case is when the function  in the functional (3.1) clearly does not 
depend on x, that is, when 

 .  (3.32) 

a b
x

η(x)
1
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( )xη

( )2η

( )2η′

( )2η′ y yF ′ ′

( )y x [ ],x a b∈
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F F Fdx dy dyF
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In this case, instead of equation (3.31), we will have the equation 

 , (3.33) 

which is easily transformed into an equation by multiplying by – 

  . (3.34) 

In turn, it follows from equation (3.34) that 

 , (3.35) 

where C is a constant. 
The expression (3.35) obtained in this way is called the first integral of Euler's 

equation. It is a first-order differential equation that clearly does not depend on , and 
therefore can always be solved. 

In some optimization problems, the Euler equation, which is a nonlinear differential 
equation of the second order, is convenient to present as a system of two differential equations 
of the first order, to obtain which a new variable is introduced 

 . (3.36) 

Substituting (3.36) into (3.22), we get 

 . (3.37) 

Let's introduce the function H, which specifies the first integral of the Euler equation, 
that is, the function 

. (3.38) 

Substituting (3.36) into (3.38), we get 

. (3.39) 

Differentiating the function  for   and for , we get 

  (3.40) 

Given that , and equality (3.37), the system of equations (3.40) can be rewritten 

as follows: 

  (3.41) 

The system of equations (3.41) is another form of representation of the Euler 
equation (3.22), which is called canonical. 
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It will not be superfluous to remind that the problem of finding the extremal , 
which delivers the extremum of the functional (3.1) and is a curve pinched at the ends, is 
usually called the simplest in the classical calculus of variations. 

To continue the analysis of sufficient conditions for reaching an extremal  within 
 the extremum of the functional (3.1), let us return to the expanded notation of the 

Euler equation (3.31). This expression can be rewritten like this – 

 .  (3.42) 

It follows from the expression (3.42) that a function  in order  to claim 
the role of an extremal must have a second derivative  in the domain, and its first 
derivative  must satisfy additional conditions in some cases. 

It is clear from (3.42) that at 

  (3.43) 

for the minimum of the functional (3.1) and at 

  (3.44) 

for its maximum, no other conditions need to be imposed on the first derivative  in the 
domain  except that it must exist in this domain. 

But if in certain points of the region   

 , (3.45) 

then it is necessary that at these same points the first derivative  numerically coincides 

with the value of the expression , that is, that the equality is fulfilled at these points 

 , (3.46) 

which follows from the necessity to have, in order  to ensure the existence in the domain
 of the second derivative , in addition to the fulfillment of the condition (3.45), 

also the fulfillment of the condition 

 . (3.47) 

It is clear that if equality (3.45) holds for all points of the region , then 
equality (3.47) must also hold for all points of this region. 

It should be noted that if equality (3.47) holds for all points of the region  , 
then this means that the integrand function  in the functional (3.1) depends on the 
first derivative linearly, i.e. that this functional has the form 

 . (3.48) 

Functionals of this type are called degenerate. 
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For them, the Euler equation is not differential since 

  (3.49) 

It follows from the expression (3.49) that the Euler equation for degenerate functionals 
does not contain derivatives of the extremal . 

Opening the outer brackets in the functional (3.47), it can be written in the form 

 , (3.50) 

that is, it turns into an integral of a complete differential. 
And, as is known from the course of mathematical analysis, the value of such an 

integral does not depend on the path of integration, that is, its value on all functions .on 
which the functional (3.50) is defined is the same, which in our case, in turn, means that the 
extremum of such the functional is reached on any function from its domain. 

If the functional (3.1) is not degenerate, that is, it cannot be represented in the form 
(3.50), and the condition (3.47) is fulfilled, then this means that the extremum of the 
functional cannot be reached in the class of smooth functions. In this case, it should be looked 
for in the class of piecewise-smooth functions whose graphs have breaks. 
 
 

3.4 Finding extremums of functionals depending on several functions and 
their first derivatives 

 
Let’s consider the problem of finding the extremum of the functional (3.3), which 

connects a set of functions 

 , (3.51) 

which defines the surface in -dimensional space, and the set  
first derivatives of these functions in the same space. 

It is clear that if the extremum of the functional (3.3) exists, then its extremals are in the 
set (3.51). 

We construct the method for finding extremals of the functional (3.3) in the following 
way: we set the variation of only the function , and we fix all other functions from 

 to  inclusive and their derivatives by converting them into constants in this 
way, forming a set in this way 

  (3.52) 

In this case, the functional (3.3) will have the form 

 , (3.53) 
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which formally does not differ from the functional (3.1). 
The minimum of such a functional, as we have already established earlier, is reached at 

the extremal , which is a solution of the Euler equation 

 , (3.54) 

or (using previously introduced notations)  

 . (3.55) 

And then we set the variation of only the function , and fix all the other 
functions  of the set (3.51) and their derivatives, turning them 
into constants in this way and forming a set 

  (3.56) 

In this case, the functional (3.3) will have the form 

 , (3.57) 

which also formally does not differ from the functional (3.1). 
The minimum of such a functional, by analogy with the previous case, is reached at the 

extremal  , which is a solution of the Euler equation 

 . (3.58) 

We will continue this process until we get an extremal , which is a solution to 
the Euler equation 

 . (3.59) 

And now let's reduce all Euler's equations, from (3.55) to (3.59), into one system 

  (3.60) 

It is clear that the set of functions 

 , (3.61) 
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which is a compatible solution of the system of Euler equations (3.60), and will be the set of 
extrema of the functional (3.3), at which it reaches an extremum. 

As in the case of the functional (3.1), the fact that the set of functions (3.61) is a 
solution of the system (3.60) provides only a necessary condition for the existence of the 
extremum of the functional (3.3). 

To check the sufficient conditions for the existence of the extremum of the functional 
(3.3) on the set of extremals (3.61), it is necessary, as in the case of the functional (3.1), to 
make sure that the Legendre conditions are fulfilled, which for one extremal had the form 
(3.28) for the minimum and (3.29) for maximum, and for the system of extremals (3.61) will 
have the form (for the minimum) – 

  (3.62) 

Sufficient conditions for the existence of the maximum of the functional (3.3) on the set 
of extremals (3.61) according to Legendre will have a form similar to (3.62), but the signs of 
the inequalities in them will be opposite. 
 
 

3.5 Finding extremums of functionals depending on one function and 
its older derivatives 

 
Consider the functional (3.2), which connects not only the function   and its 

derivative , as in the case of (3.1), but also higher derivatives . 
Back in the first half of the eighteenth century, Euler proved that a function  will 

be an extremal of the functional (3.2) if it is a solution of the equation 

 . (3.63) 

Euler obtained this equation by the method of mathematical induction. 
He first considered the problem of finding a function  at which the functional 

(3.1) reaches a minimum. We have described this process in detail in the previous sections. 
Euler then considered the functional 

 , (3.64) 

for which, following the same path with the selection of the first variation, equating it to zero 
and taking the second part of the integral by parts, we obtained the condition that the function 

 is extremal if it is a solution of the equation 

 . (3.65) 
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After that, Euler concluded that the functional (3.2) will reach an extremum on 
functions that are solutions of equation (3.63). After considering several examples with 
derivatives with an order higher than the second, he was convinced that this was the case. And 
the strict proof that the extremal of the functional (3.2) is a function  satisfying equation 
(3.63) was carried out by Poisson - that is why this equation entered the calculus of variations 
with a double name - the Euler-Poisson equation. 

For the functional (3.64), equation (3.63), which reduces to (3.65), is a fourth-order 
differential equation. Its solution will be the function , which contains 
four arbitrary constants , for the definition of which you need to have four 
equations. Such equations will be the boundary conditions 

  (3.66) 

It is clear that the necessary condition for the extremum of the functional (3.2), in which 
the highest derivative of the unknown function  is the derivative  of the third 
order, will be the condition that this function satisfies the equation (3.63), which in this case 
will have the sixth order. Six arbitrary constants of this extremal will need to be found from 
the boundary conditions of the type (3.66), with the difference that there will already be six 
equations and they will set at the boundaries not only the values of the extremal itself and its 
first derivative, as in the case of minimizing the functional (3.65), but also of its second 
derivative, that is, the system of equations (3.66) will be supplemented with more equations 

  (3.67) 

And, of course, in all equations (3.66) for this case, arbitrary constants  and  shall 
be added. 

Legendre's conditions, which distinguish the minimum of the functional (3.2) at the 
extremal  from the maximum, turned out to be very simple for this problem. 

Studies have shown that, in order for the minimum of the functional (3.2) to be reached 
at the extremal , it is sufficient to fulfill the condition 

 , (3.68) 

and for the maximum - 
 . (3.69) 

 
 

3.6 Python programs for finding unconditional extrema of functionals 
 

The Python program for exploring the unconditional extremum functioned 

𝑱𝟏 = � 𝑭𝟏(𝒕,𝒚,𝒚′)𝒅𝒕
𝒃

𝒂
 

in case when 𝒂 = 𝟎, 𝒃 = 𝟏, 𝑭𝟏(𝒕,𝒚,𝒚′) = 𝒕𝟐 + 𝒚𝟐 + 𝒕𝒚 + (𝒚′)𝟐, and the extremal y(t) 
starts at the point (𝒚(𝟎) = 𝟎,   𝒚′(𝟎) = 𝟏). 
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(Program 11) 
 
In [1]: import sympy 
In [2]: from sympy import* 
In [3]: from IPython.display import*  
In [4]: init_printing(use_latex=True) 
In [5]: t,C1,C2=symbols('t C1 C2') 
In [6]: y=Function('y')(t) 
In [7]: z=Function('z')(t) 
In [8]: z=y.diff(t) 
In [9]: u=Function('u')(t) 
In [10]: u=t**2+y**2+t*y+z**2 
In [11]: de=Eq(u.diff(y)-u.diff(z,t),0) 
In [12]: display(de) 

𝑡 + 2𝑦(𝑡) − 2
𝑑2

𝑑𝑡2
𝑦(𝑡) = 0 

In [13]: des=dsolve(de) 
In [14]: display(des) 
𝑦(𝑡) = 𝐶1𝑒−𝑡 + 𝐶2𝑒𝑡 −

𝑡
2

 
In [15]: eq1=des.rhs.subs(t,0) 
In [16]: eq1 
Out [16]: 𝐶1 + 𝐶2 
In [17]: eq2=des.rhs.diff(t).subs (t,0) 
In [18]: eq2 
Out [18]: −𝐶1 + 𝐶2 −

1
2
 

In [19]: seq=solve ([eq1, eq2-1], C1, C2) 

In [20]: seq 
Out [20]: �𝐶1:−3

4
,𝐶2: 3

4
� 

In [21]: rez=des.rhs.subs([(C1,seq[C1]),(C2, \ 
            seq[C2])]) 
In [22]: rez 
Out [22]: − 𝑡

2
+ 3

4
𝑒𝑡 − 3

4
𝑒−𝑡 

In [23]: F=Lambda (t, rez) 
In [24]: display(Latex('$y(t)=' \ 
             +str(latex(F(t)))+'$')) 

𝑦(𝑡) = −
𝑡
2

+
3𝑒𝑡

4
−

3𝑒−𝑡

4
 

In [25]: import numpy as np 
In [26]: import matplotlib.pyplot as plt 
In [27}: x=symbols('x') 
In [28]: expr=-x/2+3*exp(x)/4 \ 
            -3*exp(-x)/4 
In [29]: f=lambdify(x,expr,"numpy") 
In [30]: x=np.linspace(0,1,21) 
In [31]: f=f(x) 
In [32]: fig=plt.figure(facecolor='white') 
In [33]: plt.plot(x,f,'-r',linewidth=3) 
Out [33]: [<matplotlib.lines.Line2D \ 
               at 0x1d0a7047970>] 

 
 

 

 
 Figure 5. Graph of the extremal of the functional  𝑱𝟏 = ∫ 𝑭𝟏(𝒕,𝒚,𝒚′)𝒅𝒕𝒃

𝒂  in  case 
when a=0, b=1, 𝑭𝟏(𝒕,𝒚,𝒚′) = 𝒕𝟐 + 𝒚𝟐 + 𝒕𝒚 + (𝒚′)𝟐, and the extremal y(t) begins in points 
(y(0) = 0, 𝒚′(𝟎) = 𝟏) 

End of program 11. 



53 

The Python program for exploring the unconditional extremum functioned 

𝑱𝟏 = � 𝑭𝟏(𝒕,𝒚,𝒚′,𝒚′′)𝒅𝒕
𝒃

𝒂
 

in case when a = 0, b = 1, 
𝑭𝟏(𝒕,𝒚,𝒚′,𝒚′′) = 𝒕𝟐 + 𝒚𝟐 + (𝒚′)𝟐 + (𝒚′′)𝟐 + 𝒕𝒚 + 𝒕𝒚′ + 𝒕𝒚′′ + 𝒚′𝒚′′, and the extremal y(t) 
starts at the point  (𝒚(𝟎) = 𝟎,   𝒚′(𝟎) = 𝟏,   𝒚′′(𝟎) = 𝟎,   𝒚′′′(𝟎) = −𝟏) 
(Program 12)  
In [1]: import sympy 
In [2]: from sympy import* 
In [3]: from IPython.display import* 
In [4]: init_printing(use_latex=True) 
In [5]: t=symbols('t') 
In [6]: y=Function('y')(t) 
In [7]: z=Function('z')(t) 
In [8]: w=Function('w')(t) 

In [9]: z=y.diff(t) 
In [10]: w=z.diff(t) 
In [11]: u=Function('u')(t) 
In [12]: u=t**2+y**2+z**2+w**2 \ 
  +t*y+t*z+t*w+z*w 
In [13]: de1=Eq(u.diff(y)-u.diff(z,t) \ 
  +u.diff(w,1,t,2),0) 

 
    In [14]: display(de1) 
         𝑡 + 2𝑦(𝑡) − 2 𝑑2

𝑑𝑡2
𝑦(𝑡) + 2 𝑑4

𝑑𝑡4
𝑦(𝑡) − 1 = 0 

    In [15]: des1=dsolve(de1) 
    In [16]: display(des1) 

𝑦(𝑡) = −
𝑡
2

+ �𝐶1𝑠𝑖𝑛 �
𝑡
2
� + 𝐶2𝑐𝑜𝑠 �

𝑡
2
�� 𝑒

−√3𝑡
2 + �𝐶3𝑠𝑖𝑛 �

𝑡
2
� + 𝐶4𝑐𝑜𝑠 �

𝑡
2
�� 𝑒

√3𝑡
2 +

1
2

 

 
In [17]: eq11=des1.rhs.subs(t,0);eq11 
Out[17]: 

𝐶2 + 𝐶4 +
1
2

 
In [18]: eq12=des1.rhs.diff(t).subs(t,0) 
In [19]: eq12 
Out[19]: 

1
2
𝐶1 −

√3
2
𝐶2 +

1
2
𝐶3 +

√3
2
𝐶4 −

1
2

 
In [20]: eq13=des1.rhs.diff(t,t).subs(t,0)  
In [21]: eq13 
 

Out[21]: 

−
√3
2
𝐶1 +

1
2
𝐶2 +

√3
2
𝐶3 +

1
2
𝐶4 

In [22]: eq14=des1.rhs.diff(t,3).subs(t,0) 
In [23]: eq14 
Out[23]: 

𝐶1 + 𝐶3 
In [24]: var('C1 C2 C3 C4') 
In [25]: seq1=solve([eq11,eq12-1,eq13,\ 

eq14+1],C1,C2,C3,C4) 
In [26]: seq1 

 
Out [26]: 

       �С1 : − 1
2
− √3

12
,𝐶2 : − 1

4
− 2√3

3
,𝐶3 : − 1

2
+ √3

12
,𝐶4 : − 1

4
+ 2√3

3
� 

In [27]: rez1=des1.rhs.subs([(C1,seq1[C1]),(C2,seq1[C2]),(C3,seq1[C3]),(C4,seq1[C4])]) 
In [28]: rez1 
Out [28]: 

 − 𝑡
2

+ �(−1
2
− √3

12
)𝑠𝑖𝑛 �𝑡

2
� + (−1

4
− 2√3

3
)𝑐𝑜𝑠 �𝑡

2
�� 𝑒

−√3𝑡
2 + 

 +�(−1
2

+ √3
12

)𝑠𝑖𝑛 �𝑡
2
� + (−1

4
+ 2√3

3
)𝑐𝑜𝑠 �𝑡

2
�� 𝑒

√3𝑡
2 + 1

2
 

In [29]: F1=Lambda(t,rez1) 
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In [30]: display(Latex('$y(t)='+str(latex(F1(t)))+'$')) 

 𝑦(𝑡) = − 𝑡
2

+ �(−1
2
− √3

12
)𝑠𝑖𝑛 �𝑡

2
� + (−1

4
− 2√3

3
)𝑐𝑜𝑠 �𝑡

2
�� 𝑒

−√3𝑡
2 + 

+�(−1
2

+ √3
12

)𝑠𝑖𝑛 �𝑡
2
� + (−1

4
+ 2√3

3
)𝑐𝑜𝑠 �𝑡

2
�� 𝑒

√3𝑡
2 + 1

2
 

In [31]: import numpy as np 
In [32]: import matplotlib.pyplot as plt 
In [33]: x=np.linspace(0,1,21) 
In [34]: def y(x): 
     return -x/2+((-1/2-3**0.5/12)*np.sin(x/2)+(-1/4-2*3**0.5/3)*np.cos(x/2)) \ 

*np.exp(-x*3**0.5/2)+((-1/2+3**0.5/12)*np.sin(x/2) \ 
+(-1/4+2*3**0.5/3)*np.cos(x/2))*np.exp(x*3**0.5/2)+1/2 

In [35]: fig=plt.figure(facecolor='white') 
In [36]: plt.plot(x,y(x),'-r',linewidth=3) 
Out[36]: [<matplotlib.lines.Line2D 
at 0x1d0a7247250>] 
 

 
 Figure 6. Graph of the extremal of the functional 𝐽1 = ∫ 𝐹1(𝑡,𝑦,𝑦′,𝑦′′)𝑑𝑡𝑏

𝑎  in  case 
when a=0, b=1,  𝑭(𝒕,𝒚,𝒚′,𝒚′′) = 𝒕𝟐 + 𝒚𝟐 + (𝒚′)𝟐 + (𝒚′′)𝟐 + 𝒕𝒚 + 𝒕𝒚′ + 𝒕𝒚′′ + 𝒚′𝒚′′, and 
the extremal y(t) starts at the point (y(0)=0, 𝒚′(𝟎) = 𝟏,   𝒚′′(𝟎) = 𝟎,   𝒚′′′(𝟎) = −𝟏) 
 

End of program 12. 
 
 
 
A Python program for exploring the unconditional extremum functioned 

𝑱𝟏 = � 𝑭𝟏(𝒕,𝒚𝟏,𝒚𝟐,𝒚𝟑,𝒚𝟏′ ,𝒚𝟐′ ,𝒚𝟑′ )𝒅𝒕
𝒃

𝒂
 

in case when a=0, b=1, 𝑭𝟏(𝒕,𝒚𝟏,𝒚𝟐,𝒚𝟑,𝒚𝟏′ ,𝒚𝟐′ ,𝒚𝟑′ ) = 𝒕𝟐 + 𝒚𝟏𝟐 + 𝒚𝟐𝟐 + 𝒚𝟑𝟐 + 𝟑𝒚𝟏𝒚𝟐 +
(𝒚𝟏′ )𝟐 + (𝒚𝟐′ )𝟐 + (𝒚𝟑′ )𝟐 + 𝟓𝒚𝟐𝒚𝟑, and the extremals 𝒚𝟏(𝒕),𝒚𝟐(𝒕),𝒚𝟑(𝒕) start at the points: 
(𝒚𝟏(𝟎) = 𝟎,   𝒚𝟏′ (𝟎) = 𝟏), (𝒚𝟐(𝟎) = 𝟎,𝒚𝟐′ (𝟎) = 𝟐), (𝒚𝟑(𝟎) = 𝟎,𝒚𝟑′ (𝟎) = −𝟏) 
(Program 13) 
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In [1]: import sympy 
In [2]: from sympy import* 
In [3]: from IPython.display import*  
In [4]: init_printing(use_latex=True) 
In [5]: t=symbols('t') 
In [6]: y1=Function('y1')(t) 
In [7]: y2=Function('y2')(t) 
In [8]: y3=Function('y3')(t) 
In [9]: z1=Function('z1')(t) 
In [10]: z1=y1.diff(t) 
In [11]: z2=Function('z2')(t) 
In [12]: z2=y2.diff(t) 
In [13]: z3=Function('z3')(t) 
In [14]: z3=y3.diff(t) 
In [15]: u=Function('u')(t) 
In [16]: u=t**2+y1**2+y2**2+y3**2 \ 
 +3*y1*y2+z1**2+z2**2+z3**2+5*y2*y3 
In [17]: de11=Eq(u.diff(y1)-u.diff(z1,t),0) 
In [18]: de12=Eq(u.diff(y2)-u.diff(z2,t),0) 
In [19]: de13=Eq(u.diff(y3)-u.diff(z3,t),0) 
In [20]: display(de11,de12,de13) 

2𝑦1(𝑡) + 3𝑦2(𝑡) − 2
𝑑2

𝑑𝑡2
𝑦1(𝑡) = 0, 

3𝑦1(𝑡) + 2𝑦2(𝑡) − 2
𝑑2

𝑑𝑡2
𝑦2(𝑡) + 5𝑦3(𝑡) = 0, 

−2
𝑑2

𝑑𝑡2
𝑦3(𝑡) + 2𝑦3(𝑡) + 5𝑦2(𝑡) = 0 

 

In [21]: eq11=Eq(y1.diff(t)-z1,0) 
In [22]: eq12=Eq(y2.diff(t)-z2,0) 
In [23]: eq13=Eq(y3.diff(t)-z3,0) 
In [24]: eq14=Eq(y1+3*y2/2-z1.diff(t),0) 
In [25]: eq15=Eq(3*y1/2+y2+5*y3/2 \ 

-z2.diff(t),0) 
In [26]: eq16=Eq(-z3.diff(t)+5*y2/2+y3,0) 
In [27]: des16=dsolve(eq11,eq12,eq13,\ 

eq14,eq15,eq16);des16 
Out [27]: ValueError: dsolve() and 
 classify_ode() only work with functions  
of one variable, not True 
In [28]: import numpy as np 
In [29]: from scipy.integrate import odeint 
In [30]: import matplotlib.pyplot as plt 
In [31]: def f(y,t): 
  y1,y2,y3,z1,z2,z3=y 
  return [z1,z2,z3,y1+3*y2/2,\ 
  3*y1/2+y2+5*y3/2,\ 
  5*y2/2+y3] 
In [32]: y0=[0,0,0,1,2,-1] 
In [33]: t=np.linspace(0,1,21) 
In [34]: [y1,y2,y3,z1,z2,z3]=odeint(f,y0,t,\ 
 full_output=False).T 
In [35]: fig=plt.figure(facecolor='white') 
In [36]: plt.plot(t,y1,'-r',t,y2,'-g',t,y3,'-c',\ 
linewidth=3) 

 
Figure 7. Graph of extremals of the functional 𝑱𝟏 = ∫ 𝑭𝟏(𝒕,𝒚𝟏,𝒚𝟐,𝒚𝟑,𝒚𝟏′ ,𝒚𝟐′ ,𝒚𝟑′ )𝒅𝒕𝒃

𝒂   in   
case when a=0, b=1, 𝑭𝟏(𝒕,𝒚𝟏,𝒚𝟐,𝒚𝟑,𝒚𝟏′ ,𝒚𝟐′ ,𝒚𝟑′ ) = 𝒕𝟐 + 𝒚𝟏𝟐 + 𝒚𝟐𝟐 + 𝒚𝟑𝟐 + 𝟑𝒚𝟏𝒚𝟐 + (𝒚𝟏′ )𝟐 +
(𝒚𝟐′ )𝟐 + (𝒚𝟑′ )𝟐 + 𝟓𝒚𝟐𝒚𝟑, and the extremals 𝒚𝟏(𝒕),𝒚𝟐(𝒕),𝒚𝟑(𝒕) start at the points: 
(𝒚𝟏(𝟎) = 𝟎,   𝒚𝟏′ (𝟎) = 𝟏), (𝒚𝟐(𝟎) = 𝟎,𝒚𝟐′ (𝟎) = 𝟐), (𝒚𝟑(𝟎) = 𝟎,𝒚𝟑′ (𝟎) = −𝟏) 

End of program 13. 
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3.7 Tasks for self-testing 
 
1. Explain the concept of “functional” and give examples of its definition. 
2. How to meaningfully distinguish the absolute and relative extremes of the functional? Give 

an example. 
3. How to determine the distance of zero and first order between two functions? 
4. When is a strong relative extremum of the functional reached at the extreme? When is a 

weak relative extremum reached? 
5. What is the consistent logical connection between the weak, strong and absolute extremes 

of the function? Is the logical sequence preserved in the reverse direction? 
6. How to get the Euler equation? Give its interpretation. 
7. How to obtain the Euler equation in the form of a nonlinear differential equation of the 

second order? 
8. Obtain the first integral of the Euler equation. Give its interpretation. 
9. Derive Euler's equation in canonical form. 
10. What are the sufficient conditions for the existence of an extremum of a functional in the 

simplest problem of the calculus of variations? How to get them and how to use them to 
distinguish the maximum and minimum of the functional? 

11. How to distinguish the minimum from the maximum of a functional, if  ? 
12. Which functionals are degenerate and what can be said about their extremals? 
13. Derive the necessary conditions for the existence of an extremum of a functional that 

connects several unknown functions and their first derivatives. 
14. What are the sufficient conditions for the existence of an extremum of a functional 

connecting several unknown functions and their first derivatives? 
15. Derive the Euler–Poisson equation heuristically (according to Euler). Give its 

interpretation. 
16. What are the sufficient conditions for the existence of an extremum of a functional that 

connects the extremal with its higher derivatives? How to distinguish the maximum and 
minimum of the functional in this case? 

17. Show the command by which Euler's equation is formed 
18. Show the command that implements the solution of the Euler equation 
19. What is achieved by the command seq=solve([eq1,eq2-1],C1,C2) 
20. What is the command rez=des.rhs.subs([(C1,seq[C1]),(C2,seq[C2])]) for? 
21. What is the command var('C1 C2 C3 C4') for? 
22. Why is the command seq1=solve([eq11,eq12-1,eq13,eq14+1],C1,C2,C3,C4) needed? 
23. Why do we need the command display(de11,de12,de13)? 
24. What is the purpose of calling the command from scipy.integrate import odeint? 
25 What command does the program use to determine the extremals of the functional? 
26. Which program command transforms the system of three Euler equations of the 2nd order 

into a system of 6 equations of the 1st order? 
27. What will those few commands look like, how should they be added to the program so 

that it determines what is achieved - maximum or minimum? 
 

0y yF ′ ′ =
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Chapter 4. STUDY OF FUNCTIONALS AT THE CONDITIONAL 

EXTREMUM 
 
 

4.1 The method of uncertain Lagrange multipliers 
 

Let the functional be given 

  ,  (4.1) 

which is another form of notation of the functional (3.3) for n=2, and it is necessary to find 
such functions 
 ,  (4.2) 

which deliver the extremum of the functional (4.1) under the condition that 
 , (4.3) 

that is, under the condition that all points of the curve given by expressions (4.2) lie on the 
surface (4.3). 

Let's try to find the necessary conditions for the existence of the extremum of the 
functional (4.1) in the presence of the constraint (4.3). 

Suppose that we found such functions  and , which deliver an extremum, for 
example, a minimum, of the functional (4.1). 

Let's add to the functions  and  variations  and , which satisfy the 
requirements 

  (4.4) 

and find the first variation  of the functional (4.1) when passing from the curve on the 
surface (4.3) described by the functions , , to the curve on the same surface 
described by the functions 

  (4.5) 

It is clear that 
 , (4.6) 

That is, the first variation  of the functional (4.1) will be equal to the sum of the 
first variation  of the same functional by the coordinate y at the constant coordinate z, 
and the first variation  by the coordinate z at the constant coordinate y. 

It is obvious that at the minimum point  of the functional (4.1) the relation 
will be valid 
 . (4.7) 
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And this is possible due to independence y and z from each other only under the 
condition that 

   (4.8) 

But, as we have already seen when deriving Euler's equation, the first variations  , 
 can be presented in the form 

 , (4.9) 

 . (4.10) 

So, substituting (4.9) and (4.10) into the relation (4.6), we will have 

 . (4.11) 

Let  is a small circle at the coordinate x of the point , in which the 

minimum of the functional (4.1) is reached, and . 
Then expressions 

 , (4.12) 

  (4.13) 

will define small rectangular planes ,  on coordinate planes ,  in the 
vicinity of a point  with sides ,  and , , and expressions (4.9), (4.10) will 
define the volumes of prisms with bases ,  and , , which are under the surfaces 

 , (4.14) 

 . (4.15) 

But we know that the volume of a rectangular prism with a small rectangular plane at 
the base can be found by multiplying the area of the base by the height of this prism, which 
gives us the right to rewrite expression (4.11) in the form 

 . (4.16) 

As we have already noted, the curve described by the functions (4.5) also lies on the 
surface (4.3), so it also has a valid equality (4.3), which in this case takes the form 

 . (4.17) 
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Let's integrate equations (4.3), (4.17) in the domain . It is clear that as a 
result of integration we will get 

 , (4.18) 

 . (4.19) 

Subtract equation (4.19) from (4.18). We will get 

 . (4.20) 

Formally, under the integral in equation (4.20) is the increment  of the function 
, i.e 

 , (4.21) 

which it receives when moving from a point on the surface with coordinates  to a 

point on the same surface with coordinates . 
We remind that around a point , the increment of the function is equal to its 

first variation, i.e 
 . (4.22) 

But 
 . (4.23) 

So, taking into account expressions (4.21), (4.22), (4.23), equation (4.20) can be 
rewritten as follows: 

 , (4.24) 

or like this: 

 . (4.25) 

Taking into account the expressions (4.12), (4.13), the volumes of rectangular prisms 
given by the integrals in the expression (4.25) can be written as follows: 

  (4.26) 

Substituting the expression (4.26) into (4.25), we have in the neighborhood of the point
  –  

 , (4.27) 
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 . (4.28) 

Substituting the expression (4.28) into (4.16), we have in the neighborhood of the point 
 –  

 . (4.29) 

It follows from equation (4.29) that 

 . (4.30) 

Since we carried out all the operations before obtaining relations (4.30) using the 
operation of integration by the coordinate x , we can equate each relation in the expression 
(4.30) to an unknown function , i.e., 

  (4.31) 

In turn, relation (4.31) can be rewritten as follows: 

  (4.32) 

After all these explanations, we can state that in order for the functions (4.2) to deliver 
the extremum of the functional (4.1) in the presence of constraints (4.3), it is necessary that 
they be a solution of the equations (4.32). 

Proceeding from the expression (4.31), formally in the relations (4.32) it would be 
necessary to put a “minus” sign on the members , , but since the function 

 is still undefined, any sign can be put on it. Why it is convenient for us to put a “plus” 
will become clear from the statements that follow. And let's start these calculations by 
constructing a function 

 . (4.33) 

At the minimum point  of the functional (4.1), the expression (4.3) is valid, 
so it is clear that at this point 
 . (4.34) 

And therefore we have the right to go from finding the necessary conditions for the 
existence of the minimum of the functional  (4.1) to finding the conditions for the existence 
of the minimum of the functional , where 
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 . (4.35) 

This transition allows us to transfer the problem of finding extremals that deliver the 
conditional extremum of the functional (4.1) into the problem of finding extremals that 
deliver the unconditional extremum of the functional (4.35), which we already know how to 
solve, since we know that in the absence of restrictions, the minimum of the functional is 
reached at functions that are the solution of the system of Euler's equations obtained from the 
integral function of several variables of this functional. 

It is quite obvious that for our case this system takes the form: 

  (4.36) 

Finding , , , , we see that system (4.36) is identical to system (4.32). 
But the two equations of the system (4.36) or, which is the same thing, the system 

(4.32) do not allow us to unambiguously find the three unknown functions 

 . (4.37) 

So they need to be supplemented with a third equation, which should be taken as the 
constraint equation (4.3). In this case, the system of defining equations is closed and such that 
it gives an unambiguous solution to the problem of finding a conditional extremum. 

Lagrange, who introduced it for the first time, called the function  an 
indeterminate multiplier, and therefore the method of finding extrema at which 
functionals acquire a conditional extremum was included in the calculus of variations, 
which is an integral part of functional analysis, under the name of Lagrange's method of 
indeterminate multipliers. 

Remark. After, by introducing the Lagrange function L in the form (4.33), we 
transferred the conditional extremum problem to the category of the simplest problem of the 
calculus of variations on the unconditional extremum, the Legendre sufficient conditions 
introduced by us earlier, which distinguish the minimum from the maximum, also become 
valid for it, and the necessary conditions for the existence of an extremum for functionals that 
depend on higher derivatives. It is only necessary not to forget to substitute the Lagrange 
function L  and its derivatives instead of the function F and its derivatives in the relations by 
which these conditions are determined. At the same time, if J has the form (3.3), and the 
restriction is analogous to (4.3), i.e 

 , (4.38) 

then the structure of the Lagrange function  will be similar to (4.33), that is, it will have the 
form 
 . (4.39) 

But if a system of equations acts as a constraint 

 , (4.40) 

then the Lagrange function L should be taken in the form 

  (4.41)
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In this case, the system of Euler's equations (3.60), in which instead  of 

must be , solved together with the system of equations (4.40), since it is 
necessary to find not only n extremals , but also m undetermined Lagrange 
multipliers . 
 
 

4.2 The isoperimetric problem of finding extremals of functionals 
 

In 1732, Leonard Euler made the first approach to solving the problem of finding 
extremals of functionals under the conditions of restrictions, also given by functionals, 
which was called isoperimetric. In 1744, he published the solution to this problem in the 
most general form. 

The isoperimetric problem of finding extremals of functionals was formulated as 
follows: among curves of the same length, or, what is the same, of the same perimeter, find 
the curve that bounds the largest area. 

Mathematically, it can be written as follows: find the curve , that delivers the 
extremum of the functional (3.1), i.e., the functional 

, 

which estimates the area of a given figure, provided that another functional 

 , (4.42) 

which defines the length of the perimeter of this figure, has a constant value , i.e., 

 . (4.43) 

Euler solved this problem in an extremely complicated way, which today can be 
interesting only to specialists in the history of mathematics. 

We will present the solution of the isoperimetric problem, which was obtained by 
Lagrange 15 years later in a much simpler way using the method of uncertain factors. 

The essence of the process of solving the problem by Lagrange is as follows: if we omit 
the upper bound in the functional (4.42), then we get an integral with a variable upper bound, 
i.e., 

 , (4.44) 

the derivative of which , as is known from the course of mathematical analysis, will be 
equal to the integrand function, i.e., 

 . (4.45) 

Equation (4.45) can be considered as a restriction of the form (4.40) for . 
Taking into account this limitation, based on (4.41), the Lagrange function for the 

isoperimetric problem can be written as follows: 
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 . (4.46) 

Now we can reformulate the isoperimetric problem as follows: find the functions   
and , which deliver the minimum of the functional 

 . (4.47) 

According to the method of undetermined Lagrange multipliers, the Euler equations for 
the functional (4.47) will have the form 

  (4.48) 

Substituting the expression (4.46) into the system of equations (5.48), we obtain a 
system of equations 

  (4.49) 

From the second equation of the system (4.49), we find that 

 . (4.50) 

Substituting the expression (4.50) into the first equation of the system (4.49), we obtain 
the equation 

 , (4.51) 

which in its general form is a nonlinear differential equation of the second order. The solution 
of this equation  will depend on three constants , , , the presence of 
two of which ( ,  ) is determined by the second order of the differential equation, and the 
third ( ) by substitution (4.50). To determine them, in addition to the equation with three 
unknowns ,,, 321 ССC  which we obtain from condition (4.43) after substituting into the 
function  of the general solution  and integrating the result of the 
substitution by  in the range from  to , in the form 

 , (4.52) 

it is necessary to synthesize two more equations with the same unknowns, which is easy to do 
by using boundary conditions that will have the form 

  (4.53) 

Solving the system of three equations (4.52), (4.53) with three unknowns , , , 
we find their values  
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 , (4.54) 

which, after substituting them into the general solution  of equation (4.51), 
transform this solution into an extremal 

 ),,Cx,( 321
∗∗∗ ССy , (4.55) 

which delivers the extremum of the functional (3.1) in the presence of the constraint (4.43), 
and therefore is the solution of the isoperimetric problem of finding the extrema of the 
functionals under the conditions of the constraints also given by the functionals. 

The minimum from the maximum of the functional (3.1) on the extremal (4.55) is 
distinguished by considering the Legendre conditions for the function L. 

We remind that if 

 , (4.56) 

then the extremal (4.55) delivers the minimum of the functional (3.1), and if 

  (4.57) 

– that's the maximum. 

Remark. When considering the isoperimetric problem, we minimized the functional 
(3.1), using the functional (4.42) as a constraint (4.43). But, apparently, it was possible to do 
the opposite - to minimize the functional (4.42), and to use the functional (3.1) as a constraint. 
It is clear that the course of solving such a problem would not change, only its substantive 
interpretation would change, since with such a formulation of the problem, we would have to 
look for the curve of the smallest perimeter that limits the given area. 

So it can be stated that the functions  and   n the Lagrange 
function are equal. This fact is reflected in mathematics in the form of the principle of 
reciprocity, according to which the form of extremals when solving an isoperimetric 
problem will not change depending on which of the two functionals is minimized and 
which sets the limit. 
 
 
 

4.3 Direct method of finding extremals of functionals 
 

We already know how to find extremals of functionals by solving the Euler, 
Euler–Lagrange, or Euler–Poisson equations. 

But along with these methods, there is another class of methods for determining 
the extremals of functionals, with the help of which this procedure is carried out by 
direct minimization of the functional under the condition that the extremal is given by 
the partial sum  (1.102), in which the members of the orthonormal sequence are 
chosen as functions   from among those considered in subsection 1.3. 

The methods of this class are called direct methods for finding extrema of 
functionals or approximate methods. 

One of the most popular methods in this class is the Ritz method, proposed at the 
beginning of the 20th century. 

The essence of the Ritz method is as follows. 
Let it be necessary to find an extremal , that minimizes the functional (3.1), which 

for convenience we will rewrite in the form 
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  (4.58) 

provided that on the borders of the region  we have 

  (4.59) 

and appearance restrictions are in place 

  (4.60) 

or 

 . (4.61) 

We will look for an extremal  in the form 

 , (4.62) 

where  are known orthonormal polynomials from among those considered in the first 
section, for example, Laguerre, Legendre, or Chebyshov polynomials, which we deliberately 
chose and considered in detail in subsection 1.3, based on the convenience of their use for 
solving our problem. 

By choosing the expression (4.62), we actually reduce the task of finding the extrema of 
the functional to the task of determining the coefficients . By substituting the 
expression (4.62) into the equation of the boundary conditions (4.59), at the first stage of 
solving the problem, we reduce by two the number of unknown coefficients  that 
we need to find in order to uniquely determine the extremal (4.62), which delivers the 
minimum of the functional (4.58). 

We manage to do this at the first stage because with the help of two equations (4.59) 
two coefficients, for example  and , can be expressed in terms of other coefficients 

. 
After that, the sought extremal (4.62) will already have the form 

 . (4.63) 

By substituting expression (4.63) into (4.60) or (4.61), we will obtain at the second 
stage an equation with which one more coefficient  can be removed, for example, , by 
expressing it in terms of other coefficients . 

After that, the sought extremal (4.63) will already have the form 

 . (4.64) 

Substituting the expression (4.64) into the functional (4.58), calculating the function  
 and taking the integral, we will obtain the function at the third stage 

 , (4.65) 

which no longer contains a variable x and will be a function of coefficients only . 
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To find the optimal values of these coefficients, we use the standard method of finding 
the extremum of the function  of variables  at the fourth stage. 

For this, we equate the partial derivatives  of the function (4.65) to 

zero 

 , (4.66) 

and solve the obtained system of algebraic equations (4.66) with respect to . 

We substitute the found values of the coefficients  into the function (4.64). 
This will be the extremal   which, under the conditions of the restrictions (4.60) or 
(4.61) and the boundary conditions (4.59), delivers the minimum of the functional (4.58). 
 
 
 

4.4 Python-Realization Programs Searching for Conditional Functional Extremes 
 

Python language program for research on conditional extremum functioned  

𝑱𝟏 = � 𝑭𝟏(𝒕,𝒚,𝒚′)𝒅𝒕
𝒃

𝒂
 

in case where a = 0, b = 1, 𝑭𝟏(𝒕,𝒚,𝒚′) = 𝒚𝟐 + 𝒚𝒚′ + (𝒚′)𝟐 and the extremal y (t)  
begins at the point (y (0) = 0, 𝒚′(𝟎) = 1) and satisfies the restriction y = 1 

(Program 14) 
In [1]: import sympy 
In [2]: from sympy import* 
In [3]: from IPython.display import* 
In [4]: init_printing(use_latex=True) 
In [5]: t=symbols('t') 
In [6]: 𝜆 =symbols ('𝜆') 
In [7]: y=Function('y')(t) 
In [8]: z=Function('z')(t) 
In [9]: z=y.diff(t) 
In [10]: u=Function('u')(t) 
In [11]: u=y**2+y*z+z**2+𝜆*(y-1) 
In [12]: de=Eq(u.diff(y)-u.diff(z,t),0) 
In [13]: display(de) 

𝜆 + 2𝑦(𝑡) − 2
𝑑2

𝑑𝑡2
𝑦(𝑡) = 0 

In [14]: des=dsolve(de) 
In [15]: display(des) 

𝑦(𝑡) = 𝐶1𝑒−𝑡 + 𝐶2𝑒𝑡 −
𝜆
2

 
In [16]: eq1=des.rhs.subs(t,0);eq1 
Out[16]: 𝐶1 + 𝐶2 −

𝜆
2
 

In [17]: eq2=des.rhs.diff(t).subs(t,0);eq2 
Out[17]: −𝐶1 + 𝐶2 
In [18]: seq=solve([eq1,eq2-1],C1, C2);seq 
Out[18]: �𝐶1: 𝜆

4
− 1

2
,𝐶2: 𝜆

4
+ 1

2
� 

In [19]: rez=des.rhs.subs([(C1,\ 
             seq[C1]),(C2,seq[C2])]);rez 
Out[19]: −𝜆

2
+ �𝜆

4
− 1

2
� 𝑒−𝑡 + �𝜆

4
+ 1

2
� 𝑒𝑡 

In [20]: eq3=rez.subs(t,1);eq3 
Out[20]: −𝜆

2
+ �𝜆

4
− 1

2
� 𝑒−1 + �𝜆

4
+ 1

2
� 𝑒1 

In [21]: expr1=-𝜆/2+(𝜆/4-1/2)/exp(1) \ 
+(𝜆/4+1/2)* exp(1) 

In [22]: expr2=1 
In [23]: solveset(Eq(expr1,expr2),𝜆) 
Out [23]: 

     −4.0(−1.0𝑒−0.5+0.5𝑒2)
(−1.0+1.0𝑒)2

 
In [24]: import numpy as np 
In [25]: 𝜆=-4*(-np.exp(1)-0.5 \ 
            +0.5*(np.exp(1))**2)/(-1+\ 
             np.exp(1))**2;𝜆 
Out [25]: -0,6423909789760494 
In [26]: λ=np.array(-0.64239097897604) 
In [27]: λ=λ.round(3);λ 
Out[27]: -0.642 
In [28]: d={} 
In [29]: d["𝜆"]=-0.642 
In [30]: d 
Out [30]:{'𝜆': -0.642} 
In [31]: y=y.subs({"𝜆":-0.642});y 

( )3n − , 4,kC k n=
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k

J y
k n
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=
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0, 4,n

k
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Out [31]: 0.321 − 0.6605𝑒−𝑡 + 0.3395𝑒𝑡 
In [32]: F=Lambda(t,y) 
In [33]: display(Latex('$y(t)=' \ 
           +str(latex(F(t)))+'$')) 
𝑦(𝑡) = 0.321 − 0.6605𝑒−𝑡 + 0.3395𝑒𝑡 
In [34]: import matplotlib  
In [35]: import matplotlib.pyplot as plt 

In [36]: x=symbols('x') 
In [37]: expr=0.321-0.6605*exp(-x) \ 

+0.3395*exp(x) 
In [38]: f=lambdify(x, expr,'numpy') 
In [39]: x=np.linspace(0,1,21) 
In [40]: fig= plt.figure (facecolor='white') 
In [41]: plt.plot(x,f(x),'-r',linewidth=3)

 

 
Figure 8. Functional Extremal Graph  𝑱𝟏 = ∫ 𝑭𝟏(𝒕,𝒚,𝒚′)𝒅𝒕𝒃

𝒂  in   case when 
 a = 0, b = 1, 𝑭𝟏(𝒕,𝒚,𝒚′) = 𝒚𝟐 + 𝒚𝒚′ + (𝒚′)𝟐 and the extremal y (t) begins  

in point (y (0) = 0, 𝒚′(𝟎) = 1) and satisfies the restriction y = 1 
 

End of program 14. 
 
 
 
Python language program for research on conditional functional extremum 

𝑱𝟏 = � 𝑭𝟏(𝒕,𝒚,𝒚′)𝒅𝒕
𝒃

𝒂
 

in   case where a = 0, b = 1, 𝑭𝟏(𝒕,𝒚,𝒚′) = 𝒚 + 𝒚𝟐 + 𝒚′ + (𝒚′)𝟐, and the extremal y (t) 
begins at the point ( y (0) = 0, 𝒚′(𝟎) = 1) and satisfies the restriction 𝑱𝟐 = ∫ (𝒚 + 𝒚′)𝒅𝒕𝒃

𝒂 , 
where 𝑱𝟐 = 𝟎.𝟓 
(Program 15) 
In [1]: import sympy 
In [2]: from sympy import* 
In [3]: from IPython.display import* 
In [4]: init_printing(use_latex=True) 
In [5]: t=symbols('t') 
In [6]: y=Function('y')(t) 
In [7]: z=Function('z')(t) 
In [8]: z=y.diff(t) 
In [9]: y1= Function('y1')(t) 
In [10]: z1 = Function(′z1′)(t) 

In [11]: z1=y1.diff(t) 
In [12]: C3=symbols('C3') 
In [13]: u=Function('u')(t) 
In [14]: u=y+y**2+z+z**2+C3*(z1-y-z) 
In [15]: de=Eq(u.diff(y)-u.diff(z,t),0) 
In [16]: des=dsolve(de) 
In [17]: display(des) 

 𝑦(𝑡) = 𝐶1𝑒−𝑡 + 𝐶2𝑒𝑡 +
𝐶3
2
−

1
2

 
In [18]: eq1=des.rhs.subs(t,0);eq1 
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Out[18]: 𝐶1 + 𝐶2 + 𝐶3
2
− 1

2
 

In [19]: eq2=des.rhs.diff(t).subs(t,0);eq2  
Out[19]: −𝐶1 + 𝐶2 
In [20]: var('C1 C2') 
Out[20]: (C1,C2) 
In [21]: seq=solve([eq1,eq2-1],C1,C2);seq 
Out[21]: 
 �𝐶1:−𝐶3

4
− 1

4
,𝐶2:−𝐶3

4
+ 3

4
� 

In [22]: rez=des.rhs.subs([(C1,seq[C1]),\ 
             (C2,seq[C2])]);rez 
Out[22]:  
 𝐶3
2

+ �− 𝐶3
4
− 1

4
� 𝑒−𝑡 + �− 𝐶3

4
+ 3

4
� 𝑒𝑡 − 1

2
 

In [23]: inte1=integrate(rez \ 
+rez.diff(t),(t,0,1));inte1 

Out[23]: 𝐶3 + 𝑒(3−𝐶3)
2

− 2 

In [24]: solveset(Eq(inte1,0.5),C3) 

Out [24]: 2.5(−1.0+0.6𝑒)
−1.0+0.5 𝑒

 

In [25]: import numpy as np 
In [26]: C3=2.5*(-1.0+0.6*(np.exp(1))/ \ 
             (-1.0+0.5*np.exp(1))) 

Out [26]: 4,39221119 
In [27]: C3=np.array(4.39221119) 
In [28]: C3=C3.round(3);C3 
Out[28]: 4.392 
In [29]: d={} 
In [30]: d["C3"]=4.392 
In [31]: d 
Out [31]:{'C3': 4.392} 
In [32]: y=rez.subs({'C3':4.392});y 
Out [32]: 1.696 − 1.348𝑒−𝑡 − 0.348𝑒𝑡 
In [33]: F=Lambda(t,y) 
In [34]: display(Latex('$y(t)='+\ 
             str(latex(F(t)))+'$')) 
 𝑦(𝑡) = 1.696 − 1.348𝑒−𝑡 − 0.348𝑒𝑡 
In [35]: import matplotlib 
In [36]: import matplotlib.pyplot as plt 
In [37]: x=symbols('x') 
In [38]: expr=1.696-1.348*exp(-x) \ 

-0.348*exp(x) 
In [39]: f=lambdify(x, expr,"numpy") 
In [40]: x=np.linspace(0,1,21) 
In [41]: fig= plt.figure (facecolor='white') 
In [42]: plt.plot(x,f(x),'-r',linewidth=3) 

 

 
Figure 9. Functional Extremal Graph  𝑱𝟏 = ∫ 𝑭𝟏(𝒕,𝒚,𝒚′)𝒅𝒕𝒃

𝒂  ,  
when a = 0, b = 1, 𝑭𝟏(𝒕,𝒚,𝒚′) = 𝒚 + 𝒚𝟐 + 𝒚′ + (𝒚′)𝟐,  

and the extremal y (t) begins at the point (y (0) = 0, 𝒚′(𝟎) = 1)  
and satisfies the restriction 𝑱𝟐 = ∫ (𝒚 + 𝒚′)𝒅𝒕𝒃

𝒂 , where 𝑱𝟐 = 0.5 
 

End of program 15. 
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Python language program for research on conditional functional extremum 

𝑱𝟏 = � 𝑭𝟏(𝒕,𝒚,𝒚′)𝒅𝒕
𝒃

𝒂
 

the Ritz using the first 5 orthonorimized polynomials of the Legendre, when a = -1, 
b = 1, 𝑭𝟏(𝒕,𝒚,𝒚′) = 𝒚 + 𝒚𝟐 + 𝒚′ + (𝒚′)𝟐, and the extremal y (t) begins at the point 
(y (0) = 0, 𝒚′(𝟎) = 1) and satisfies the restriction 𝑱𝟐 = ∫ 𝑭𝟐(𝒕,𝒚,𝒚′)𝒅𝒕𝒃

𝒂 , where 
𝑭𝟐(𝒕,𝒚,𝒚′) = 𝒚 + 𝒚′,      𝑱𝟐 = 𝟏 
(Program 16) 
In [1]: import sympy 
In [2]: from sympy import* 
In [3]: from IPython.display import* 
In [4]: init_printing(use_latex=True) 
In [5]: t=symbols ('t') 
In [6]: P0=Function('P0')(t) 
In [7]: P1=Function('P1')(t) 
In [8]: P2=Function('P2')(t) 
In [9]: P3=Function('P3')(t) 
In [10]: P4=Function('P4')(t) 

In [11]: P0=1 
In [12]: P1=t 
In [13]: P2=(3*t**2-1)/2 
In [14]: P3=(5*t**3-3*t)/2 
In [15]: P4=(35*t**4-30*t**2+3)/8 
In [16]: var('C0 C1 C2 C3 C4') 
Out[16]: (C0,C1,C2,C3,C4) 
In [17]: y=Function('y') (t) 
In [18]: z=Function('z') (t) 
In [19]: y=C0*P0+C1*P1+C2*P2+C3*P3+C4*P4 

In [20]: display(y) 

𝐶0 + 𝐶1𝑡 + 𝐶2 �
3𝑡2

2
−

1
2
� + 𝐶3 �

5𝑡3

2
−

3𝑡
2
� + 𝐶4(

35𝑡4

8
−

15𝑡2

4
+

3
8

) 

In [21]: z=y.diff(t) 
In [22]: display(z) 

𝐶1 + 3𝐶2𝑡 + 𝐶3 �
15𝑡2

2
−

3
2
� + 𝐶4(

35𝑡3

2
−

15𝑡
2

) 
 
In [23]: eq1=y.subs(t,0);eq1 
Out[23]: 𝐶0 −

𝐶2
2

+ 3𝐶4/8 
In [24]: eq2=z.subs(t,0);eq2 
Out[24]: 𝐶1 − 3𝐶3/2 
In [25]: seq=solve ([eq1,eq2-1],C0,C1);seq 
Out[25]: {𝐶0: 𝐶2

2
− 3𝐶4

8
,𝐶1: 3𝐶3

2
+ 1} 

In [26]: rez=y.subs([(C0,seq[C0]),(C1,seq[C1])]) 
In [27]: rez1=z.subs([(C0,seq[C0]),(C1,seq[C1])]) 
In [28]: u=Function('u')(t) 
In [29]: u=rez+rez1 
In [30]: eq3=integrate(u,(t,-1,1));eq3 

Out[30]: 𝐶2 + 5𝐶3 −
3𝐶4
4

+ 2 
In [31]: seq1=solve([eq3-1],C2);seq1 
Out[31]: {C2:-5𝐶3 + 3𝐶4

4
− 1} 

In [32]: rez2=rez.subs([(C2,seq1[C2])]) 
In [33]: rez3=rez1.subs([(C2,seq1[C2])]) 
In [34]: u1=Function ('u1')(t) 
In [35]: u1=rez2+rez2**2+rez3+rez3**2 
In [36]: w=symbols('w') 
In [37]: w=integrate(u1,(t,-1,1));w 

Out[37]: 
  2755𝐶3

2

14
+ 81𝐶3 − 108𝐶3𝐶4 + 1477𝐶42

45
− 108𝐶4

5
+ 317

30
 

In [38]: eq4=diff(w,C3);eq4 

Out[38]: 2755𝐶3
7

− 108𝐶4 + 81 

In [39]: eq5=diff(w,C4);eq5 

Out[39]: −108𝐶3 + 2954𝐶4
45

− 108
5

 

In [40]: seq2=solve([eq4,eq5],C3,C4);seq2 

Out[40]: {𝐶3:− 67149
318865

,𝐶4:− 7776
446411

} 
In [41]: rez4=rez2.subs([(C3,seq2[C3]),\ 
  (C4,seq2[C4])]);rez4 
Out[41]:  −4860𝑡4

63773
− 67149𝑡3

127546
+ 7980𝑡2

63773
+ 𝑡 

In [42]: F=Lambda(t,rez4) 
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In [43]: display(Latex('$rez4(t)=' \ 
           +str(latex(F(t)))+'$')) 

𝑟𝑒𝑧4(𝑡) = −
4860𝑡4

63773
−

67149𝑡3

127546
+

7980𝑡2

63773
+ 𝑡 

 
In [44]: expr=-4860*t**4/63773 \ 
           -67149*t**3/127546+7980*t**2/63773+t 
In [45]: expr1=expr.evalf(3);expr1 
   −0.0762𝑡4 − 0.526𝑡3 + 0.125𝑡2 + 𝑡 

In [46]: from sympy.plotting import plot 
In [47]: exstremal=plot(expr1,(t,-1,1)) 
 

 
Figure 10. Functional Extremal Graph  𝑱𝟏 = ∫ 𝑭𝟏(𝒕,𝒚,𝒚′)𝒅𝒕𝒃

𝒂  in   case when  
a = -1, b = 1, 𝑭𝟏(𝒕,𝒚,𝒚′) = 𝒚 + 𝒚𝟐 + 𝒚′ + (𝒚′)𝟐 , and the extremal y (t) begins  

at the point (y (0) = 0, 𝒚′(𝟎) = 1) and satisfies the restriction 𝑱𝟐 = ∫ 𝑭𝟐(𝒕,𝒚,𝒚′)𝒅𝒕𝒃
𝒂  , 

where 𝑭𝟐(𝒕,𝒚,𝒚′) = 𝒚 + 𝒚′,     𝑱𝟐 = 𝟏 
 

End of program 16. 
 
 
 
 

4.5 Self -Testing Task 
 
1. What is the difference between the search for conditional extremum and the unconditional? 
2. Formulate the lagrani problem and the algorithm for solving it using uncertain factors. 
3. Prove that the task of minimizing the functional in the presence of restrictions can be 

transformed into the simplest problem of variational calculus in relation to the functional, 
in which these restrictions are introduced using indefinite Lagrange multipliers. 

4. Write down the algorithm of the Lagrange for the functional, which depends on several 
functions and their derivatives, in the conditions of restrictions determined by one 
equation, as well as the system of equations. 
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5. How is the isopermetric problem of optimization and why is it called isopermetric? 
6. Construct an algorithm for solving the isoperimetric optimization problem. 
7. How to distinguish the minimum functional from the maximum in the problem of 

conditional extremum? 
8. What is the essence of the principle of reciprocity in isoperimetric problem? 
9. What is the essence of direct methods of finding functional extremums? The essence of the 

Ritz method. 
10. In what form is the extremal of functional in the Ritz method found? What orthonormal 

sequences are used in this method? 
11. Expand the essence of the stages of solving the problem of search for an extremum 

functional by the Ritz method. 
12. Show the command that formed the Euler- Lagrange equation 
13. Show the command of the application by which Euler- Lagrange equation is summoned to 

the monitor 
14. Why do we need the seq=solve([eq1,eq2-1],C1,C2) 
15. What is the purpose of implementing rez = des.rhs.subs ([(C1, Seq [C1]), (C2, Seq [C2]))? 
16. What does the command f=lambdify(x, expr3,"numpy")? 
17. How to determine what is achieved on extremities - a minimum or a maximum of 

functionality? 
18. What will those few teams look like to add to the program to determine what is achieved – 

maximum or minimum? 
19. Where does the algorithm for determining Fourier coefficients in the program that 

implements the Ritz method? 
20. Show the program command that implements the determination of coefficients C0, C1? 
21. How is the C2 coefficient determined and what teams in the program are searching for its 

value? 
22. How are the C3, C4 coefficients determined and what teams in the program are searching 

for their values? 
23. What is reached by the rez4=rez2.subs([(C3,seq2[C3]),(C4,seq2[C4])])? 
24. What is the exstremal=plot(expr1,(t,-1,1))? 
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Chapter 5. OPERATORS AND THEIR APPLIED ASPECTS 

 
 

5.1 Operator, its linearity and norm 
 

In the third and fourth chapters of this tutorial, we studied the properties of functionals 
that specify the laws according to which each element of the set of functions is matched by 
some element of the set of numbers. 

And now let's move on to the study of operators that set laws according to which each 
element from a set of functions is matched with some element from another or the same set of 
functions. 

And let's begin the study of this section of functional analysis by establishing some of 
the most commonly used characteristics and properties of operators. 

The operator A, which transforms a set X into a set Y, is called linear if, firstly, it is 
additive, i.e. it satisfies the relation 

 , (5.1) 

and secondly, is continuous, i.e., the relation holds for it 

 , (5.2) 

if , . 
The following is true for a linear operator : 

1) ; (5.3) 

2) ; (5.4) 

3)  –  is a scalar. (5.5) 

If the relation (5.5) holds for the operator, then it is called homogeneous. 
One of the most important properties of the operator , is its boundedness 

on the unit ball , for which it is performed 

 . (5.6) 

The boundedness of the linear operator A is set as follows. 
Let there exist such a constant K that 

 . (5.7) 

Number 

  (5.8) 

is called the norm of the operator  and denote 

 . (5.9) 

We remind that the symbol “ ” means the “upper limit” of the expression that is on 
the right side of this symbol. The set of elements on which the operator acts is indicated under 
the symbol. 

From the triangle inequality for the norm, it follows that for  is true  

( )1 2 1 2 1 2, ,A x x A x A x x x X⋅ + = ⋅ + ⋅ ∀ ∈

0nA x A x⋅ → ⋅

0nx x→ 0 , nx x X∀ ∈
A

0 0, 0A X⋅ = ∈

( ) ,A x A x x X− = − ⋅ ∀ ∈

( ) , ,A t x t A x x X t⋅ ⋅ = ⋅ ⋅ ∀ ∈

[ ]0,1S X⊂

1,x x S≤ ∈

,A x K x x X⋅ ≤ ⋅ ∀ ∈

0
1

sup
x

K A x
≤

= ⋅

A

0K A=

sup

x S∀ ∈
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 . (5.10) 

And therefore it can be claimed that the set of linear operators   that transform a set  
 into a set  , which is symbolically denoted as 

  (5.11) 

or 

 , (5.12) 

 is a linear normalized space . 
It follows from relations (5.7) (5.10) that for the norm of the operator 

 . (5.13) 

A very important theorem: if an additive and homogeneous operator is bounded, 
then it is continuous and therefore linear. 

Proof. 
Let , , . 
Then, due to additivity and boundedness, 

 . (5.14) 

But from the fact that , it follows that 

 . (5.15) 

Substituting the expression (5.15) into (5.14), we obtain that 

 . (5.16) 

The relation (5.16) is the property (5.2) written through the norm, which determines the 
continuity of the operator. 

But, if the operator A is continuous and additive, then it is linear by definition. 
For a Hilbert space, the concept of a continuous operator can also be introduced using a 

scalar product. That is, in the H-space it is such a linear operator  from the set , 
for which the fact that , , implies that 

 . (5.17) 

Due to the presence of a scalar product in H-space, a special class of linear operators is 
distinguished, which are called symmetrizing operators. In this case, the operator 

 is called symmetrizing if for  

   (5.18) 

Consider  under the condition that  is a variable element and a  is a fixed 
element in the H-space, that is, we assume that 

 . (5.19) 

Under condition (5.19), the scalar product  is a linear functional of , that is, 
we have 
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 . (5.20) 

By changing the elements of , we will obtain different values of the functional 
(5.20), which can be formally denoted by the symbol  -  

 , (5.21) 

where . 
But, on the other hand, you can formally write that 

 , (5.22) 

where  is a linear operator that transforms elements  into elements of . 
This operator  is called conjugate to the operator . 

Since for the elements  and  it is also possible to define the scalar product as 
, the ratio will also be valid 

 , (5.23) 

which we obtain by substituting into the expression of the relation (5.22). 
But, if  is a symmetrizing operator, it follows from the comparison of expressions 

(5.18) and (5.23) that 

 , (5.24) 

i.e., the symmetrizing operator  coincides with its conjugate . In this regard, 
symmetrizing operators are also called self-adjoint. 

Operator , for which 

 , (5.25) 

where  is a single operator, i.e. such that 

 , (5.26) 

called a unitary. 
 
 
 

5.2 The inverse operator and the resolvent and spectrum of the operator 
 
Let the operator  be given. 

The operator , which satisfies the equation 

  (5.27) 

is called the inverse of the operator . It is clear that equations (5.27) can be satisfied only 
under the condition that 

 . (5.28) 

Note that by the product of any operators we mean their consecutive application to the 
element standing to the right of them. 
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After introducing the inverse operator  , it is clear that to solve the equation 

  (5.29) 

it is necessary to find , since  

  (5.30) 

The question arises: “How to solve the equation: 

 , (5.31) 

 , (5.32) 

where , ,  and is  – a scalar?” 
Let's rewrite (5.31), (5.32) as follows: 

  (5.33) 

 . (5.34) 

Let there exist an operator , inverse to , i.e 

 . (5.35) 

 In this case, multiplying equation (5.33) on the left by , we get 

 . (5.36) 

Expression (5.36) will be the solution of equation (5.33). 
The inverse operator , which is defined by the relation (5.35), is called the 

resolvent of the operator or the solving operator for equation (5.33). 
It is clear that the solution of equation (5.34) will have the form 

 . (5.37) 

Those values of the parameter , that allow having a resolvent , are called 
regular values of the operator . All other values of the parameter , which are not 
regular, make up the spectrum of the operator . 

But, as research has shown, there are such values of , for which the homogeneous 
equation (5.32) has a solution other than zero, that is, (5.37) is not fulfilled for them. Such 
values , are called characteristic numbers or eigenvalues of the operator . It is clear 
that they are points of the spectrum of this operator. 

But it should be noted that the spectrum of the operator  may include values that are 
not its characteristic numbers , that is, the power of the spectrum of the operator is greater 
than the power of the set of its characteristic numbers.  
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The theorem is useful for finding solutions to many inhomogeneous operator 
equations of the class (5.31): let  , where is B-space. Let there also exist 
some parameter , which satisfies the condition 

 . (5.38) 

Under these conditions, the operator  has an inverse operator  and at the 
same time 

 . (5.39) 

It is clear that  is also a resolvent of the operator , normalized to . 
(5.39) is proved by decomposing  into a power series around the point  . 
Let us give some properties of the resolvent. 

1. For the set   of regular points of the operator  

 . (5.40) 

From equation (5.40) by means of the limit transition , we obtain 

 . (5.41) 

2. If the operator  is bounded, then its entire spectrum lies in a circle 

 , (5.42) 

and outside this circle, i.e. at 

  (5.43) 

the resolvent  can be decomposed into a series that converges according to the norm of the 
operator 

 . (5.44) 

3. The radius of the smallest circle   with the center at the origin of 
coordinates, which contains the entire spectrum of the operator  , is called the spectral 
radius and can be determined by the Gelfand formula  

 . (5.45) 

It follows from the expression (5.45) that 

 . (5.46) 

4. Let  be a common regular point of two closed linear operators  and . If  
, then 

 . (5.47) 

Let us return to equation (5.31) or, which is the same thing, to equation (5.33). Two 
statements can be made about it. 
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1. Equation (5.31) is said to have a unique solution if the corresponding 
homogeneous equation 

  (5.48) 
has only zero solution. 

2. Equation (5.31) is said to have a correct solution if for   the relation 

 . (5.49) 

is true. 
It follows from the first statement that there is a left inverse operator  for the 

operator . 
It follows from the second statement that the operator  is bounded, and therefore the 

solution of equation (5.31) depends continuously on the right-hand side. 
Let us introduce the notion of a group of operators. 

A group  of operators  is understood to mean such a set of them, which have 
the following properties:  

1) ; (5.50) 

2)  (5.51) 

3) . (5.52) 

It is clear that these three properties have only those operators , that are bounded and 
satisfy the relation 
 . (5.53) 

It follows from the expressions (5.50), (5.52) and (5.53) that the operator A can be 
defined as a derivative of the group  at . 

Therefore, the operator   is called the generic operator for the group  or, 
which is the same thing, the infinitesimal operator. 

Expanding the exponent in expression (5.53) into a power series, we obtain 

 , (5.54) 

that is, the group  can be specified not only through the exponent (5.53), but also in the 
form of a power series (5.54). 
 
 

5.3 Method of compressed images 
 

This method is one of the key for many applications of functional analysis in applied 
problems of the IT sphere, but before explaining its essence, we give a theorem about the 
only common point of a sequence of nested closed spheres and is formulated as follows: a 
sequence of nested closed spheres  which are subsets of the complete 
metric space R, such that  
  (5.55) 

and the radii  of which approach zero at  , have a single common point  . 
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The proof of this theorem is based on the fact that for the sequence (5.55), no matter how 
small we choose the number , it is always possible to construct a closed sphere with a 
radius  for which the expression 

 , (5.56) 

from which, due to the completeness of space , it follows that no matter which two points 
of this space we take, it will always be possible to construct a sphere with a radius smaller 
than the distance between these points, and therefore the sequence    is fundamental, for 
which it is true 

 .  (5.57) 

And it follows from the expressions (5.55), (5.56), (5.57) that with the insertion of a 
sphere into a sphere, the radius of each of the following ones is smaller and smaller, we will 
arrive at a single point  of space , common to all these spheres, in which this sequence 
the ball is formed. 

And now let's imagine that we form a sequence of such “balls”    on 
a segment  of the number axis, provided that 

  (5.58) 

According to the above-formulated and proven theorem, this sequence, contracting, will 
lead to a single common point on the number axis . So, if we determine the law , 
according to which, when compressing a segment  of the numerical axis , each point 

 of the previous segment   will correspond to a point  
 of the next segment nested in the previous one, then this single common point 

can be found by solving the equation 

 . (5.59) 

And then we will write the definition: the mapping given in the metric space R by the 
operator A is called compressed if for  and  the inequality holds   

  (5.60) 
where 

  (5.61) 

Next, it is appropriate to consider Banach's theorem, which, in fact, is an extension to 
operators of the above-proved theorem about the only common point of a sequence of nested 
spheres given in a complete metric space, and which is formulated as follows: the 
compressed mapping by the operator A of the complete metric space R in itself has one 
and only one fixed point. To prove this theorem, we assume that the operator A acts on a 
point   such that 

  (5.62) 

Let's also assume that 

  (5.63) 

where  is given by the expression (5.61). 
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Let's ask . Then, according to expressions (5.60) and (5.62), we have 

  (5.64) 

Based on the definition of the metric as the distance between the elements of the metric 
space , we can write that 

  (5.65) 

Let's leave only the first and last terms in inequality (5.64), which will only strengthen 
it. As a result of such a step, we get that 

 . (5.66) 

Let 

 . (5.67) 

By substituting expressions (5.63) into (5.65), and the result of this substitution into 
expression (5.66), taking into account the condition (5.66), we obtain 

  (5.68) 

Note that in obtaining the expression (5.68), we used the formula for the sum of the 
members of  
an infinitely decreasing geometric progression with the denominator . 

It is easy to see that with growth n the multiplier  on the right-hand side of inequality 
(5.68) will approach zero due to the fulfillment of condition (5.61), which, in turn, indicates 
that with growth   the left-hand side of this inequality will also approach zero, i.e. that the 
sequence   is fundamental and therefore for the general term  

  (5.69) 

of the sequence (5.62) when  the equality holds 

 , (5.70) 

which, according to expression (5.59) of the theorem on the existence of a fixed point, 
confirms that part of Banach's theorem, which states that the compressed mapping carried out 
by the operator A in the complete metric space R has a fixed point x. And it is quite obvious 
that this fixed point is a solution of the operator equation (5.70). 

It remains to prove that part of Banach's theorem, which states that this fixed point x is 
the only one for the operator A. 

This proof can be carried out from the opposite, that is, suppose that the mapping 
carried out by the operator A in the metric space R has two fixed points x and . Then 
equality (5.70) will hold for each of them, i.e. then we will have for the point  as well 

 . (5.71) 

But then, according to the definition of the concept of compressed mapping and 
expressions (5.60), (5.70), (5.71), we can write that 

 . (5.72) 

Expression (5.72) can be fulfilled only under the condition that 

 ,  (5.73) 
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i.e., further compression by this operator cannot be performed. And this, in turn, proves that 

  (5.74) 

i.e., that these points occupy the same place on the axis - this is the confirmation of that part 
of Banach's theorem, which states that the fixed point is the only one for the operator A. 

As we will show in the next section dedicated to applied aspects of functional analysis, 
algorithms for solving operator equations, which are both algebraic and integral equations, are 
easily formed using the method of compressed mappings and the Banach theorem proved 
above 
 
 

5.4 Application of the compressed mapping method to prove the existence of a 
single solution of differential and integral equations 
 

Consider the space C of continuous functions  defined on the segment  
of the number axis, with values defined on the segment  of the number axis, and the 
metric 

 ,  (5.75) 

where  are the points of this space. 
Let the differential equation be given in the space C 

  (5.76) 

with the initial condition 

 .  (5.77) 

Let's impose a condition on the function   so that it satisfies the Lipshitz 
condition, that is, so that 

  (5.78) 

where   are the points of the rectangular area G, bounded by segments , 
 , on the plane  , and L is a constant, the numerical value of which will be 

determined a little later. 
Let's integrate the differential equation (5.76) in the range from   to  

 .  (5.79) 

We will have 

 ,  (5.80) 

or 

 .  (5.81) 

It is obvious that the integral equation (5.81) can be rewritten in operator form as 
follows 
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 .  (5.82) 

If we prove that the operator A carries out a compressed mapping of the space of 
functions C into  itself, then we thereby prove that this mapping defines a single fixed point in 
this space, which in the functional interpretation is the solution of the integral equation (5.81), 
which, in in turn, is another form of writing the differential equation (5.76), and therefore this 
proof will be simultaneously a proof that in the given space both the integral equation (5.81) 
and the differential equation (5.76) have a solution which, in addition is the only one. 

Applying the compressed mapping method, we have the right to write that 

  (5.83) 

where 

  (5.84) 

According to the ideology of the method of compressed mappings, in order for the 
expression (5.83) to realize this ideology, it is necessary that the inequality 

 . (5.85) 

Comparing expressions (5.84) and (5.85), we see that expression (5.83) will implement 
the ideology of the compressed mapping method and will direct the sequence 

  (5.86) 

to a single fixed point of the domain G, which will be the projection of the function  
onto the metric functional space C and the solution of the integral equation (5.81) in the case 
when the constant L satisfies the inequality 

 .  (5.87) 

Integral equation 

   (5.88) 

which connects continuous functions  with the norm in the space of continuous functions C 

   (5.89) 

with functions  continuous at the points of the plane , bounded by the boundaries 
of the rectangle , with norm 

 ,  (5.90) 

is called the Fredholm equation of the 2nd kind in honor of the mathematician who 
constructed it and studied its properties. It is also called the inhomogeneous Fredholm 
equation. 

If the upper bound of the integral in equation (5.88) is set equal to x , then we obtain the 
integral equation 
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   (5.91)  

which connects in the same space of continuous functions C the continuous functions  
with the norm (5.89) with the same continuous functions  with the norm (5.90) and 
which is called the Volterra equation of the 2nd kind - also in honor of the mathematician 
who proposed and studied this structure properties This integral equation is called Volterra's 
inhomogeneous equation. 

If in equations (5.88), (5.91) we put 

 ,   (5.92) 

then these integral equations are called, respectively, the Fredholm equations of the 1st kind 
and Volterra equations of the 1st kind or, again, respectively, the homogeneous Fredholm 
equation and the homogeneous Volterra equation. 

An operator A that in space C transforms a class of functions φ into itself according to 
an expression 

   (5.93) 

is called the Fredholm operator with kernel .  
Taking into account the expression (5.93), the Fredholm equation (5.88) can be 

rewritten in operator form as 

 , (5.94) 

and its n-th iteration with successive approximations to the solution will have the form 

 .  (5.95) 

It is obvious that the Volterra operator will formally differ from the Fredholm operator 
only in that the upper limit of the integral in it will not be a constant  but an independent 
variable , but, in fact, due to this, we will have the power of the set of functions formed by 
the Volterra operator, greater than the power of the set of functions, which is formed by the 
Fredholm operator. But since the properties of the Fredholm and Volterra operators coincide, 
we will focus further explanations on the Fredholm operator. And this operator has three such 
basic properties: firstly, it is linear, secondly, it is continuous, thirdly, it is bounded, which is 
sufficient to prove that its mapping in metric space has a single fixed point, which is a 
solution using the Fredholm equation, and to build a resolvable algorithm for obtaining this 
solution. So, 

1) the Fredholm operator is linear because 

 ;  (5.96) 

2) the Fredholm operator is continuous, because if there is a limit  of the sequence 
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 ,  (5.97) 
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  (5.98) 

then 

  (5.99) 

3) the Fredholm operator is bounded because 

  (5.100) 

We will show that the Fredholm operator performs a compressed mapping of the space 
of functions into itself. To do this, we will apply the standard algorithm of the compressed 
mapping method, but not with respect to metrics, but with respect to norms, according to 
which we will have 

   (5.101) 

  (5.102) 

Continuing, by analogy, for the sequence (5.95) we obtain 

  (5.103) 
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In expressions (5.101), (5.102), (5.103) 

 .  (5.104) 

As we remember, in order for the expressions (5.101), (5.102), (5.103) to carry out 
compression leading to a fixed point, which is a solution of the integral equation (5.88), it is 
necessary that the inequality 

 .  (5.105) 

And since the norm  of the kernel  of the Fredholm operator and the 
segment  of the numerical axis on which the integration is carried out in the integral 
equation (5.88) are determined by the conditions of the problem for which this equation was 
synthesized, it follows from the expressions (5.104), (5.105) that in order for the 
inhomogeneous Fredholm's integral equation (5.88) had a unique solution , it is necessary 
to choose the parameter  based on the relation 

 . (5.106) 

Since the norm  specifies the distance between two points  and  the 
metric space C of continuous functions with the metric (5.75), and therefore 

 , (5.107) 

then the expression (5.103), which we used to prove that the Fredholm operator compresses 
mappings in a given functional metric space, can also be used to decide at which stage the 
iterative process can be stopped 

  (5.108) 

calculation of approximations   to the solution  of equation (5.88). To do this, it is 
necessary to set the permissible value  of the approximation error and stop the calculation 
according to the expressions (5.108) at the value n for which the inequality will be fulfilled 

 .  (5.109) 

And at the end of this section, we will construct the resolvent of the Fredholm operator. 
Let’s rewrite the operator equation (5.94) in the form 

 .  (5.110) 

The operator equation (5.110) can also be presented as follows: 

 .  (5.111) 

Let's define the inverse operator  and multiply the operator equation (5.111) by 
it on the left. We will get 
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  (5.112) 

or 

  . (5.113) 

According to the expression (5.39) given in subsection 5.2, the operator 

  (5.114) 

and is the resolvent of the Fredholm operator equation. And since, in determining it, we used 
the formula for the sum of members of an infinitely decreasing geometric progression with 
denominator A, then there will be a resolvent  only if 

 ,  (5.115) 

that is, when 

 ,  (5.116) 

which is fully consistent with the expression (5.106). 
Taking into account the expression (5.114), the solution (5.113) of the operator equation 

(5.110) can be rewritten as 

   (5.117) 

And applying the limit transition to the last equation in the system of approximations 
(5.108), we have 

.  (5.118) 

It follows from expressions (5.117) and (5.118) that 

 .  (5.119) 

With this, we have confirmed that in the process of successive approximations (5.108) 
we will necessarily arrive at an approximate solution of the Fredholm equation of the 2nd 
kind, the error of which will not exceed the given value . 
 
 

5.5 Example of solving operator equations 
 

As an example, we will demonstrate how to apply the method of compressed mappings 
to solve an operator equation that has the form of an integral Fredholm equation of the 2nd 
kind given in the form (5.88). 
Let 

 .  (5.120) 

Substituting conditions (120) into expression (5.88), we will have a concretized 
Fredholm integral equation of the 2nd kind in the form 

   (5.121) 
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We need to start solving this equation by the method of compressed mappings by 
determining the admissible value of the parameter , for which we should use the inequality 
(5.106), in the right-hand side of which we must also substitute the norm of the kernel of the 
Fredholm operator, the numerical value of which is determined by the expression (5.90). For 
the conditions specified by expressions (5.120), the numerical value of this norm will be equal 
to 
 . (5.122) 

Substituting the numerical values of the corresponding parameters from the expressions 
(5.120) and (5.122) into the inequality (5.106), we will have 

 .  (5.123) 

We accept 

 .  (5.124) 

For our conditions, the iterative process (5.108) of approximations to the solution of 
equation (5.121) will have the form 

  (5.125) 

We will stop this process and declare the last approximation that satisfies the criterion 
(5.109) to be the approximate solution of equation (5.121), which for our conditions (5.120) 
will be 

   (5.126) 

And then we proceed to iterations. 
Let  
In this case, from the expression (5.125), we have 

  (5.127) 

Let's check the obtained approximation  to the solution  using the criterion 
(5.126), substituting the value   from the expression (5.125) and the value   from the 
expression (5.127) into which and revealing the norm based on the expression (5.107), we 
will have 

  (5.128) 

Comparing the numerical value of expression (5.128) with the right-hand side of 
expression (5.126) when n=0 ,we see that the inequality is not satisfied, so it is impossible to 
stop the iterative process upon obtaining the approximation (5.127). 

And so let it now  
In this case, from expressions (5.125) and (5.127) we have 
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  (5.129) 

We will check the obtained approximation  to the solution , by using the 
criterion (5.126), substituting the value  from the expression (5.127) and the value 

 from the expression (5.129) into which and revealing the norm based on the expression 
(5.107), we will have 

  (5.130) 

Comparing the numerical value of the expression (5.130) with the right-hand side of the 
expression (5.126) when  ,we see that the inequality is not satisfied, so it is impossible to 
stop the iterative process upon obtaining the approximation (5.129) 

So let it now n=3 
In this case, from expressions (5.125) and (5.129), we have 

  (5.131) 

Let's check the obtained approximation  to the solution  using the criterion 
(5.126), substituting the value  from the expression (5.129) and the value  from 
the expression (5.131) into which and revealing the norm based on the expression (5.107), we 
will have 

   (5.132) 

Comparing the numerical value of the expression (5.132) with the right part of the 
expression (5.126) at n = 2, we see that inequality is performed, so the iterative process after 
receiving the approximation (5.131) can be stopped and assume that with an error not 
exceeding the specified conditions (5.120) the numerical value 0.1 approximate solution of 
integral equation (5.121) is an expression 

  (5.133) 
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5.6 Python-realization of algorithms of calculating the norm of operators and 
Solving operator equations 

 
Python program to calculate the norm of the function differentiation operator 

in the metric functional space C [a, b] for the case when a = 1, b = 3 
  (Program 17) 

In [1]: import sympy 
In [2]: from sympy import * 
In [3]: import numpy as np 
In [4]: t = symbols('t') 
In [5]: x = Function('x')(t) 
In [6]: y = Function('y')(t) 
In [7]: z=Function('z')(t) 
In [8]: x=2*t-0.5*t**2+t**0.5 
In [9]: y=x.diff();y 
Out[9]: 0.5*t**(-0.5) - 1.0*t + 2 
In [10]: z=y.diff();z 
Out[10]: -0.25*t**(-1.5) - 1.0 
In [11]: t=np.linspace(1,3,21)  
In [12]: g1=lambda t: 2*t-0.5*t**2+t**0.5 
In [13]: g1vec=np.vectorize(g1) 
In [14]: g11=g1vec(t) 
In [15]: g111=np.piecewise(g11,[g11<0,\ 

g11>=0],[lambda g11:-g11,\ 
lambda g11:g11]) 

In [16]: ng1=g111.max();ng1 
Out[16]: 3.4715750888103103 
In [17]: ng1=np.round_(ng1,3) 
In [18]: ng1 
Out[18]: 3.472 
In [19]: g2=lambda t: 2-1.0*t+\ 

0.5*t**(-0.5) 

In [20]: g2vec=np.vectorize(g2) 
In [21]: g22=g2vec(t) 
In [22]: g222=np.piecewise(g22,[g22<0,\ 
  g22>=0],[lambda g22:-g22,\ 
  lambda g22:g22]) 
In [23]: ng2=g222.max() 
In [24]: ng2 
Out[24]: 1.5 
In [25]: nd_dt=ng2/ng1;nd_dt 
Out[25]: 0.43202764976958524 
In [26]: np.round_(nd_dt,3) 
Out[26]: 0.432 
In [27]: g3= lambda t:-0.25*t**(-1.5) -1.0 
In [28]: g3vec=np.vectorize(g3) 
In [29]: g33=g3vec(t) 
In [30]: g333=np.piecewise(g33,[g33<0,\ 
  g33>=0],[lambda g33:-g33,\ 
   lambda g33:g33]) 
In [31]: ng3=g333.max() 
In [32]: ng3 
Out[32]: 1.25 
In [33]: ndd_dtdt=ng3/ng1;ndd_dtdt 
Out[33]: 0.36002304147465436 
In [34]: np.round_(ndd_dtdt,3) 
Out[34]: 0.36 

 
       End of program 17 
 
 
 
Python program to calculate the norm of the function differentiation operator in the 
metric functional space  𝑳𝟐[a,b] for the case when a = 0, b = 2 
(Program 18) 
In [1]: import sympy 
In [2]: from sympy import * 
In [3]: t = symbols('t') 
In [4]: x = Function('x')(t) 
In [5]: y = Function('y')(t) 
In [6]: z=Function('z')(t) 
In [7]: x=1+2*t-0.5*t**2-0.25*t**3 
In [8]: y=x.diff();y 
Out[8]: -0.75*t**2 - 1.0*t + 2 
In [9]: z=y.diff();z 
Out[9]: -1.5*t - 1.0 
In [10]: f1=x*x;f1 

Out[10]: 4*(-0.125*t**3 - 0.25*t**2 +\ 
 t + 1/2)**2 

In [11]: f11=expand(f1);f11 
Out[11]:  
0.0625*t**6 + 0.25*t**5 - 0.75*t**4 - \ 

2.5*t**3 + 3.0*t**2 + 4*t + 1 
In [12]: b=integrate(f11,(t,0,2));b 
Out[12]: 7.00952380952381 
In [13]: nx=b**0.5;nx 
Out[13]: 2.64755053011719 
In [14]: f2=y*y;f2 
Out[14]: 4*(-0.375*t**2 - 0.5*t + 1)**2 
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In [15]: f22=expand(f2);f22 
Out[15]: 0.5625*t**4 + 1.5*t**3 - \ 
 2.0*t**2 - 4.0*t + 4 
In [16]: b1=integrate(f22,(t,0,2));b1 
Out[16]: 4.26666666666667 
In [17]: ny=b1**0.5;ny 
Out[17]: 2.06559111797729 
In [18]: f3=z*z;f3 
Out[18]: 
 2.25*(-t - 0.666666666666667)**2 

In [19]: f33=expand(f3);f33 
Out[19]: 2.25*t**2 + 3.0*t + 1.0 
In [20]: b2=integrate(f33,(t,0,2));b2 
Out[20]: 14.0000000000000 
In [21]: nz=b2**0.5;nz 
Out[21]: 3.74165738677394 
In [22]: nd_dt=ny/nx;nd_dt 
Out[22]: 0.780189497605494 
In [23]: ndd_dtdt=nz/nx;ndd_dtdt 
Out[23]: 1.41325249290268 

 
   End of program 18 
 
 
 
 
The Python language program for solving the algebraic equation f (x) = 0 in the 

variant 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎, given on the segment of values x ∈ [e, h] independent variable 
by compressed reflection method after representing it in the form x = f (x), i.e in the 
variant x =  −𝒂𝒙𝟐

𝒃
− 𝒄/𝒃 

(Program 19) 
In [1]: import numpy as np 
In [2]: import sympy as sm 
In [3]: a = 1.0 
In [4]: b = -6.0 
In [5]: c = 8.75 
In [6]: po = 0.05 
In [7]: e = 0 
In [8]: h = 2 
In [9]: N = 21 
In [10]: x, y = sm.symbols('x y') 
In [11]: fx = -a*x**2/b-c/b 
In [12]: fy = -a*y**2/b-c/b 
In [13]: expr1 = -a*x**2/b-c/b 
In [14]: expr2 = -a*y**2/b-c/b 
In [15]: f0 = sm.lambdify(x, expr1,\ 

 "numpy") 
In [16]: f00 = sm.lambdify(y, expr2, \ 

"numpy") 
In [17]: x = np.linspace(e, h, N) 

In [18]: print(f"x: {x}") 
x: [0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 \ 
 0.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 \ 
  1.7 1.8 1.9 2.] 
In [19]: f1 = f0(x) 
In [20]: print(f"f1: {f1}") 
 f1: [1.45833333 1.46       1.465       \ 
 1.47333333 1.485      1.5        \ 
 1.51833333 1.54       1.565     \ 
 1.59333333 1.625      1.66      \ 
 1.69833333 1.74       1.785     \ 
 1.83333333 1.885      1.94      \ 
 1.99833333 2.06       2.125     ] 
In [21]: f11 = f1.min() 
In [22]: f12 = f1.max() 
In [23]: print(f"f11, f12: {f11, f12}") 
 f11, f12: (1.45833333333333,\ 
  2.124999999999998) 
In [24]: e1 = float(e); h1 = float(h) 

 
In [25]: if e1 < f11 and f12 < h1: 

    print("1st if") 
    x[0] = 1.0 
    for i in range(N): 
        print(f"i: {i}") 
        x[i+1] = -a*(x[i])**2/b-c/b 
        xx = x[i+1]-x[i] 
        axx = abs(xx) 
        if axx < po: 
            print(x[i+1]) 
            break 
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        else: 
            i += 1 
            print('1st else') 

else: 
    for j in range(1,4): 
        print(f"j: {j}") 
        e2 = e-j 
        h2 = h+j 
        N1=(h1-e1)/0.1+1 
        N2=int(N1) 
        y = np.linspace(e2, h2, N2) 
        f2 = f00(y) 
        f21 = f2.min( ) 
        f22 = f2.max( ) 
        e3 = float(e2); h3 = float(h2) 
        if e3 < f21 and f22 < h3: 
            print("2nd if") 
            y[0] = 1.0 
            for k in range(N2): 
                print(f"k: {k}") 
                y[k+1] = -a*(y[k])**2/b-c/b 
                yy = y[k+1]-y[k] 
                ayy = abs(yy) 
                print(f"ayy: {ayy}") 
                if ayy < po: 
                    print(f"y[k+1]:{y[k+1]}")  
                    break 
                else:  
                    k += 1 
                    print('2nd else') 

 
Printing the results obtained in the cycle: 

j: 1 
2nd if 
k: 0 
ayy: 0.625 
2nd else 
k: 1 
ayy: 0.2734375 
2nd else 
 

k: 2 
ayy: 0.16057332356770804 
2nd else 
k: 3 
ayy: 0.1059101050271205 
2nd else 
k: 4 
ayy: 0.07455950924982035 
2nd else 

k: 5 
ayy: 0.054731667403494555 
2nd else 
k: 6 
ayy: 0.041356092063042915 
y[k+1]: 2.3355681973111864 
j: 2 
j: 3 

End of program 19. 
 
 

 
 
 
Python language program to solve the integral equation of Fredholm of the second kind 

𝝋(𝒙) = 𝒇(𝒙) + 𝝀� 𝑲(𝒙,𝒚)𝝋(𝒚)𝒅𝒚
𝒃

𝒂
,  

in which: a = 0, b = π, f (x) = sin (x), ,𝑲(𝒙,𝒚) = 𝒙𝒆−𝒚 , ε = 0.01, compressed reflection 
method 
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(Program 20) 
In [1]: import numpy as np 
In [2]: import sympy as smp 
In [3]: a = 0 
In [4]: b = 3 
In [5]: po = 0.05 
In [6]: N = 31 
In [7]: x, y = smp.symbols('x y') 
In [8]: fxy = x*smp.exp(-y) 
In [9]: expr=fxy 
In [10]: f0= smp.lambdify((x,y),expr,\ 

"numpy") 
In [11]: x = np.linspace(a,b,N) 
In [12]: y = np.linspace(a,b,N) 
In [13]: f1 = f0(x,y) 
In [14]: print(f"f1: {f1}") 
f1: [0.         0.09048374 0.16374615  
0.22224547 0.26812802 0.30326533  
0.32928698 0.34760971 0.35946317  
0.36591269 0.36787944 0.36615819 
 0.36143305 0.35429133 0.34523575  
0.33469524 0.32303443 0.31056199  

0.297538   0.28418038 0.27067057  
0.2571585  0.24376695 0.23059534 
 0.21772309 0.2052125  0.1931113  
 0.18145488 0.17026818 0.15956734  
0.14936121] 
 
In [15]: f11 = f1.max() 
In [16]: print(f"f11: {f11}") 
 f11: 0.36787944117144233 
In [17]: q = 1/(f11*(b-a)) 
In [18]: q1 = q - 0.5 
In [19]: q1=q1.round(1) 
In [20]: print(f"q1: {q1}") 
q1: 0.4 
In [21]: x, y = smp.symbols('x y') 
In [22]: g = smp.Function('g')(x) 
In [23]: h = smp.Function('h')(x) 
In [24]: f2 = x**2 
In [25]: g = f2 
In [26]: gg = [] 
In [27]: gg.append(g) 

 
In [28]: for i in range(20): 

    print(f"i: {i}") 
    g = f2 + smp.integrate(q1*x*smp.exp(-y)*(gg[i]).subs(x,y),(y,0,3)) 
    gg.append(g) 
    h = gg[i+1] - gg[i] 
    mh = smp.integrate(h**2,(x,0,3)).n(3) 
    print(f"mh: {mh}, {type(mh)}") 
    nh = mh**0.5 
    print(f"nh: {nh}, {type(nh)}") 
    if nh > po: 
        i += 1  
    else:  
        print(f"gg[i+1]: {gg[i+1].n(3)}") 
        break 

 

Printing the results obtained in the cycle: 
i: 0 
mh: 1.92, <class 'sympy.core.numbers.Float'> 
nh: 1.38437852708354, <class 'sympy.core.numbers.Float'> 
i: 1 
mh: 0.197, <class 'sympy.core.numbers.Float'> 
nh: 0.443458310822449, <class 'sympy.core.numbers.Float'> 
i: 2 
mh: 0.0202, <class 'sympy.core.numbers.Float'> 
nh: 0.142055441765376, <class 'sympy.core.numbers.Float'> 
i: 3 
mh: 0.00207, <class 'sympy.core.numbers.Float'> 
nh: 0.0455071838073526, <class 'sympy.core.numbers.Float'> 
gg[i+1]: x**2 + 0.672*x 

End of program 20. 
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5.7 Self -Testing Task 
 
1. Give a definition of the operator. Give examples. 
2. Which operator is linear? What properties of a linear operator do you know? 
3. What is the norm of the operator? Write down the inequality of the triangle for the norm of 

the operator. 
4. Which linear operator is symmetrical? 
5. What is a conjugated and self -burned operators? 
6. Which operator is called unitary? 
7. How to determine the inverse operator? 
8. What is the resolve of the heterogeneous operator equation? 
9. What are the values of the operator regular and what are its spectrum? 
10. What are the characteristic numbers or own values of the operator? 
11. Are the characteristic numbers of the operator within the set of its regular values? 
12. How can resolvets express through a row by the operator's degrees? 
13. What are the properties of the operator resolvents? 
14. Under what conditions does a heterogeneous operator equation have a correct solution? 
15. What is meant by a group of operators and what properties of such a group do you know? 
16. What is the essence of the idea of the compressed reflections of the operator? 
17. Formulate and prove Banah's theorem about a single fixed point in the compressed display 

of the operator. 
18. Using the compression method of reflections, prove that the algebraic equation has a 

single fixed point on a given segment of the numerical axis. 
19. If the algebraic equation has several roots, how to find all its fixed points? 
20. Using the compression method of reflections, prove the existence of a single fixed point 

of differential operator. 
21. How to transform an integral operator into a differential? 
22. Using the compression method of reflections, prove the existence of a single fixed point 

of Fredholm operator. 
23. What is Fredholm's resolution? 
24. Construct an algorithm for sequential approximates to a single fixed point of Fredholm 

operator. 
25. What is the criterion for achieving the necessary accuracy of the approximate solution of 

the heterogeneous integral equation of Fredholm of the 2nd kind? 
26. What is the fundamental difference between Fredholm and Voltaire operators? 
27. How are the capacity of the sets of integral equations of Fredholm and Voltaire 

compassionate? 
28 Show the commands in the programs that set cycles. 
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Chapter 6. SPECIAL OPERATORS AND THEIR APPLICATIONS 

 
6.1 Direct and inverse Laplace operators 
 

From the general course of higher mathematics, which is taught to students of technical 
higher education institutions, it is known that with the help of the Laplace operator 

  (6.1) 

each continuous time function ( ), given on the set of real numbers, which satisfies 
the condition  at , the Dirichlet condition and is called the original, can be 
matched with a function F of the complex variable  , which is called the image 
of the original on the complex plane. This correspondence is recorded as follows: 

 . (6.2) 

For example, the time function of a unit jump 

  (6.3) 

on the complex plane corresponds to the image 

 , (6.4) 

or 

 . (6.5) 

Another example – the exponent  at  on the complex plane corresponds to the 
image 

 . (6.6) 

The main advantage of the analysis in the area of images , i.e. on the 
complex plane, compared to the analysis in the area of originals , i.e. in time space, 

is that under zero initial conditions, the operation of differentiation  of the original  

 in time space corresponds to the operation of multiplication by a complex variable 
p of its image  on the complex plane, i.e 

 , (6.7) 

since 

 . (6.8) 
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We draw attention to the fact that when integrating according to expression (6.8), we 
used the well-known method of integration by parts, assigning new variables  values 

, as a result of which we will have   and a zero initial 
condition f(0) = 0 . 

Applying the same technique, we get that 

  (6.9) 

and 

 . (6.10) 

And the operation of integrating the original  in time space corresponds to the 
operation of division by the complex variable p of its image  on the complex plane, 
i.e. 

 , (6.11) 

since 

    (6.12) 

When integrating according to expression (6.12), we also used the method of integration 

by parts, assigning new variables  the values , as a result of which 

we will have . 

Applying the same technique, we get that 

  (6.13)
 

Deu to the properties (6.7), (6.11) and their consequences (6.10), (6.13), differential 
and integral equations written in time space correspond to algebraic equations on the 
complex plane, which are much easier to solve, since this is taught in school. 

For example, to the differential equation in the domain of the originals  ,  

  (6.14) 

on the complex plane corresponds to the algebraic equation 

  (6.15) 

relative to images  and . Its solution is the function , which can be 
determined from equation (6.15) as follows: 
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  (6.16) 

or 
 , (6.17) 

where 

 . (6.18) 

If we consider  as the image  of the signal  which enters the input of a linear 
dynamic system (LDS), the mathematical model of which can be written in the form (6.14), 
where  is the response of this system to the input signal , then the function  
can be interpreted as a transfer function of the system (Fig. 11). 
 

 
 

Figure 11 – Generalized structural diagram of a linear dynamic system in the image area 
 

As can be seen from the expressions (6.16)–(6.18), the transfer function  does not 
depend on the external signals acting on the system, but uniquely characterizes its ability to 
transfer these signals from its input to the output. And therefore, this function is one of the 
most important mathematical models of linear dynamic systems, for which the Laplace 
transform (6.1) specifies a mutually unambiguous correspondence between the originals and 
their images. 

It follows from the expression (6.17) that, knowing the image  of the input signal  
 and the image  of the system response to this signal, the transfer function can be 

obtained by taking their ratio, i.e. 

 
 

  (6.19) 

An inverse operator exists for the Laplace operator defined by expression (6.1) 

 , (6.20) 

according to which the original  can be found from a known image , which, 
as a rule, is used only for constructing tables of correspondence between  and , 
and in the practice of analysis, decomposition formulas obtained by applying the remainder 
theorem when integrating in expression (6.20) are more often used, one of which is for 
multiple image poles  

 ,  (6.21) 
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. (6.22) 

Recall that  these are the roots of the equation 

 , (6.23) 

а which are called the poles of the expression (6.21), and 

 . (6.24) 

We will give an example of the use of the decomposition formula (6.22). 
Let us have an image of an unknown original in the form 

 . (6.25) 

It is necessary to determine its original . 
It is obvious that for our example 

  (6.26) 

Let's find the poles of the image (6.25), that is, the roots of the equation 

 . (6.27) 

Bringing equation (6.27) to the form 

 , (6.28) 

it is easy to see that the poles of the image (6.25) are 

  (6.29) 

Substituting (6.26) and (6.29) into the expansion formula (6.22), we obtain 

  (6.30) 
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and is the original image  given by expression (6.25). We remind you once again that the 
original is defined only for the values of . 

Note that if among the poles of the image (6.21), or, that is the same, among the roots of 
the equation (6.23) of the n-th order there is a multiple root, for example , of multiplicity k, 
i.e., when the equation (6.23) takes the form 

   (6.32) 

then instead of the expansion formula in the form (6.22) we will have the expansion formula 
in the form 

  (6.33) 

or 

  (6.34) 

Let's relate the transfer function  of a linear dynamic system with its transient 
 and impulse transient  characteristics.  

The transient characteristic  of the system is its response to the input signal 
 in the form of a single jump. That is, in   case when  , we have . 
The graphic interpretation of this definition is shown in fig. 12. 
 

 
 

Figure 12 – Response graph h(t) of a linear dynamic system per unit jump 1(t) 
 
 
The impulse transient or weight characteristic  of the system is its response to 

a single impulse input signal  in the form of a delta function , for which the 
following is true: 

  (6.35) 

 . (6.36) 

It follows from the expressions (6.35), (6.36) that the delta-function is an idealization of 
the pulse of a unit area with an extremely high height and an extremely short length (Fig. 13). 
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Figure 13 – Response graph g(t) of the linear dynamic system of LDS per unit impulse δ(t) 
 
 

It is very important that the signal  that acts on the input of a linear dynamic 
system with an impulse transient characteristic  (Fig. 14) and the response of the system 

 to this signal are related by the convolution integral 

 , (6.37) 

which belongs to the class of integral Fredholm equations, which we considered earlier, and 
which has an extremely transparent meaning - the output signal of a dynamic system is 
formed by the sum of reactions to each pulse of the input signal during the presentation of this 
input signal in the form of a sequence of pulses with a height equal to the value of the input 
signal in appropriate moment in time. 
 

  
 

Figure 14 – Generalized structural diagram of a linear dynamic system 
 

Since, according to relation (6.17), the Laplace image  of the output signal of a 
linear dynamic system is the product of the transfer function  of this system and the 
Laplace image  of the input signal of the system, which in case of fulfillment of (6.3), 

according to (8.5), will be equal to , then for the image according to Laplace , we 

will have the transition characteristics  

 , (6.38) 

which, in turn, gives us the right to record 

 . (6.39) 
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It is easy to see that the Laplace imae of the delta function is equal to 

 . (6.40) 

So, if  
 , (6.41) 

by definition 

 , (6.42) 

then it follows from (6.17) that 

 . (6.43) 

That is, the transfer function of a linear dynamic system is the Laplace image of its 
impulse transient characteristic, and vice versa 

 . (6.44) 

It follows from relations (6.38) and (6.43) that 
 . (6.45) 

And this, in turn, means that the equation is valid in the field of originals 

 , (6.46) 

that is, that the impulse transient characteristic  of the system can be obtained by 
differentiating its transient characteristic  . 

Summarizing the above, it can be stated that the mathematical model of LDS in the 
form of a transfer function  can be determined by dividing the Laplace-transformed 
response of the system  by the Laplace-transformed input signal . It is quite 
obvious that before the Laplace transformation, both the experimentally recorded input signal 

 and the experimentally recorded response of the system  to this signal must be 
approximated by the appropriate functions of the argument . According to the Weierstrass 
theorem, this can almost always be done with the help of polynomials in powers of the 
argument , the Laplace transformation of which leads to the ratio of polynomials in powers 
of the argument . It is also obvious that the simplest task of identifying such a system will 
be solved by this algorithm if the input signal of the dynamic system is a single jump  or 
a single pulse , from the Laplace-transformed responses of the system to each of which 
we immediately obtain a transfer function according to the relations (6.38) or (6.43). 

At the end of this subsection, we will show how to construct a mathematical model of 
this system in the form of a differential equation after obtaining the LDS transfer function 

. 
Let the mathematical model of the LDS on the complex plane have the form 

 .
 

. (6.47) 
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Substituting the value  from expression (6.47) into expression (6.17) and moving 
the denominator to the left side of the equality, we obtain 

  (6.48)
 

Opening the brackets in equality (6.48) and taking into account that the multiplication 
of the image by  corresponds to the differentiation of the original with respect to t, we 
arrive at a differential equation of the n-th order 

 , (6.49 

for which the condition is fulfilled 

 , (6.50) 
which is due to the ability of the system to be physically implemented under such a model. 

It is quite obvious that in order to obtain a solution of a differential equation of the n-th 
order, it must be integrated n-once, which causes the appearance  of constant integrations, 
for the specification of which it is necessary to know at the initial moment of time not only 
the value of the initial coordinate , but also the value at this initial moment of all its 
derivatives up to  order inclusive, that is, the initial conditions for equation (6.49) have 
the form: 

  (6.51) 

It should be noted that a significant number of LDSs is characterized by the fact that all 
elements of their structures, which are able to store energy, lose this energy after the system is 
turned off, which gives reason to consider the initial conditions for the model in the form of 
(6.49) before the system is restarted zero, that is, in the system of equations (6.51), consider 
all right-hand sides to be equal to zero. This immediately leads to the advantages of solving 
this differential equation due to its transformation into a complex plane using the Laplace 
operator with the subsequent application to the obtained image of the inverse of the Laplace 
operator in the form of one of the forms of the decomposition theorem. 

Summarizing all of the above, we can state that the direct Laplace operator 
implements the law of mapping a set of continuous functions of a real argument, given 
on the number axis, into a set of continuous functions of a complex argument, given on a 
complex plane, the coordinates of the points of which are also real numbers. And the 
inverse Laplace operator works on the contrary, implementing the inverse process of 
transforming the specified sets into one another. 

And we will conclude the consideration of direct and inverse Laplace operators by 
referring to the fact that in functional analysis and related sections of mathematics, the theory 
and practice of applying these operators carries operational calculus. 
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6.2 Autoregressive operators in time series display problems 
 

During the systematic analysis of dynamic processes that have a random nature and the 
creation of information technologies suitable for the implementation of this analysis, a 
significant role is assigned to the prediction of the development of these processes over time. 

To date, the most effective mathematical models that can be used to predict the 
development of processes are those that use time series during their construction. 

We remind  that a time series is a set of values of a random process taken at equal 
time intervals . Let us denote this set by the symbol . 

In fact,  this is a random process discrete in time.  
The task of forecasting is that, knowing the value of the process at the moment , it is 

necessary to forecast its value at the moment , where l is the bias time. To distinguish the 
forecast value of the process from the actual value, the actual value of the time series at the 
moment  is denoted by the symbol , and the forecast value by the symbol . 

It is clear that it is in principle impossible to accurately predict the value of a random 
process, which is a time series, and therefore the forecast is carried out by achieving the 
minimum of some functional chosen as a criterion for the adequacy of the forecast model. 

If the value is small  (1, 2 steps), then one of such criteria can be the variance of the 
deviation  from , which should be minimal for the optimal forecast model, i.e.  

 , (6.52) 

where  is the symbol of the mathematical waiting operation. 
Like any other random process, the time series  can be stationary (Fig. 15, a) or non-

stationary (Fig. 15, b). 
 

      
а)                                                             b) 

Figure 15 – Graphs of realization of stationary (a) and non-stationary (b) time series 
 
 

A stationary time series is characterized by the equilibrium of its values  near the 
average value , which is a constant, as shown in Fig. 15, a. 

For a non-stationary time series, the moving average value  of the process is a 
function of time , as shown in Fig. 15, b. 
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We will introduce a number of useful operators that will be needed later. 
1. The operator  shifts back by one time unit 

 . (6.53) 

It is clear that, according to the expression (6.53), the expression is also valid 

 . (6.54) 

Substituting the values  from expression (6.53) into (6.54), we obtain 

 . (6.55) 

Generalizing the expression (6.55), we have 

 . (6.56) 

2. The forward shift operator F by one time unit 

 . (6.57) 

It is clear that, according to the expression (6.57), the expression is also valid 

 . (6.58) 

Substituting the values  from expression (6.57) into (6.58), we obtain 

 . (6.59) 

Generalizing the expression (6.59), we have 

 . (6.60) 

3. Difference operator  with a shift back by one time unit 

 . (6.61) 

Substituting the values from expression (6.53) into (6.61), we get 

 . (6.62) 

It follows from the expression (6.62) that 

 . (6.63) 

4. Difference operator  with forward shift by one time unit 

 . (6.64) 

Substituting the values  from expression (6.57) into (6.64), we obtain 

 . (6.65) 

It follows from the expression (6.65) that 

 . (6.66) 

5. Sum operator S  

 . (6.67) 
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Substituting the values  from expression (6.56) into (6.67), we get 

 . (6.68) 

We draw attention to the fact that during the derivation of relation (6.68) we used the 
formula for the sum of the terms of an infinitely decreasing geometric progression with the 
denominator B, which, under the condition of considering it as a number and the condition of 
convergence of the series (6.67), must be less than unity. 

It follows from relations (6.63) and (6.68) that 

 , (6.69) 
or 

 . (6.70) 

Therefore, the sum operator is the inverse of the difference operator with a 
backward shift. 

Next, we remind that a sequence of uncorrelated and normally distributed random 
pulses  with zero mean and variance 

  (6.71) 

called discrete white noise. 
Let's try to use white noise pulses  to build a time series  model in the following 

way 
 , (6.72) 

where  is the reference level (average value) of the time series , and are 
the weight coefficients of the white noise pulses with which they are included in the sum 
(6.72). 

Let's perform the operation of centering the time series  by subtracting the average 
value .  

For a centered time series 

 . (6.73) 

From the expression (6.72), we obtain 

 . (6.74) 

Using relation (6.56) for pulses , from (6.74) we have 

 . (6.75) 

Let's mark 

 . (6.76) 

Taking into account (6.76), the relation (6.75) can be written as follows 
 . (6.77) 

The expression  in the form (6.76) is a filter operator that transforms a sequence 
of white noise pulses  into a time series with given properties (Fig. 16), i.e., matches a 
discrete stochastic function from one zero-dimensional set with another discrete stochastic 
function from another zero-dimensional set. 
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Figure 16 – Block diagram of a linear filter 
 
 

The coefficients of the filter operator are selected in the procedure of 
minimizing the criterion (6.52) at . 

In the model of the linear filter (6.72), the values of the time series  are determined by 
the weighted sum of the current and previous pulses of white noise . 

A characteristic feature of the filter operator  given by expression (6.76) is that it 
theoretically has an infinite number of members, which creates certain inconveniences in case 
of its practical use. 

Therefore, the proposal to build a time series model  based on a finite set of power-q 
weighted pulses of white noise  in the form 

. (6.78) 

Since the ratio (6.78) uses q  of the previous values of white noise , which 
are weightedly subtracted from the current pulse , this ratio actually specifies a “moving 
average” that “shifts” along the sequence  with growth , keeping the same number of 
members during the “shift” . 

Applying the ideology of relation (6.56) to impulses , from expression (6.78) we 
obtain 

, (6.79) 

or 
 , (6.80) 

where  is the moving average operator – 

 (6.81) 

of order  , which is actually also a filter operator, but with a limited number of components, 
that is, a “shortened” filter operator. 

The ratio (6.80) defines a model of a stationary time series , which uses the moving 
average operator (6.81), and therefore in mathematics it is agreed to call this model the model 
of the moving average order  (abbreviated: the MA  model). 

We will show how the filter operator is related to the autoregression operator. 
From a philosophical point of view, the regression model is a model “looking back, 

towards where it came from”; that is, it is a model that sets the value of some process coordinate 
at a given moment of time based on its independent components determined at a previous 
moment. The number of components taken into account determines the regression order. 

Based on this interpretation, the autoregression model is a model that sets the value of 
some process coordinate at a given time based on its previous values. The number of taken 
into account previous values determines the order of autoregression. 

For a centered time series , the order  autoregression model (abbreviated: AR(p) ) 
can be written as 
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, (6.82) 

where  is the white noise pulse, the definition of which is given above. 
Taking into account relation (6.56), expression (6.82) can be rewritten as follows 

, 
or 

 , (6.83) 

where  is the autoregression operator of order , which has the form 

. (6.84) 

Let's use the identity further 

, (6.85) 

in which  is the unit operator; and the operator  is the inverse of the operator 
. 

Multiplying by  the left side of equation (6.83), we get 

 , (6.86) 

or (taking into account (6.85)) -  

 . (6.87) 

Since multiplication by the unit operator does not change the result, expression (6.87) 
can be written as follows 

 . (6.88) 

Comparing the expression (6.88) with (6.77), it can be stated that 

 . (6.89) 

So, by synthesizing the autoregression operator  based on the realization of the 
studied time series  , which is easy to do, as will be shown below, and defining the operator 

 inverse to , which is also quite simple, we simultaneously define the linear filter 
operator , which forms a time series  from white noise  with given properties. 

We pay attention to the fact that in this case  the criterion (6.52) is not 
minimized when , which was discussed above. 

When solving the problem of identifying a time series  model based on the order  
autoregression operator, it is necessary to determine  the unknowns, which are the 
coefficients  of the operator , the average value  of the process  and 

the variance  of white noise . 
We will talk about how to solve this problem after we define the concepts of 

utocovariance and autocorrelation of a time series. 
The autocovariance  of a time series  with a delay  is called an expression 

, (6.90) 
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in which  is the symbol for calculating the mathematical expectation from the expression in 
curly brackets. 

It is clear that 

  (6.91) 

is the variance of the time series . 

To obtain a statistical estimate  of the autocovariance  defined by the expression 
(6.90), the expression is used 

. (6.92) 

Autocovariance  characterizes the degree of linear relationship between the 
values of the time series  and . 

It is clear that 

  (6.93) 

The autocorrelation  of a time series  with a delay  is called an expression 

 . (6.94) 

The following relations are valid for arbitrary autocorrelation : 

  (6.95) 

The entire possible population  is the autocovariance function of the time series 
. It belongs to the class of lattice functions. Similarly, the set of all values  defines 

the autocorrelation function of the time series . 
An example of the graph of the autocorrelation function  is shown in Fig. 17. 

 

 

Figure 17 – One of the possible graphs of the autocorrelation function  
 
 

And now let's return to the already formulated task of determining the coefficients of the 
autoregression operator, that is, we will get an answer to the question: “How to determine the 
coefficients of the autoregression of the time series model in the form of AR ?”. 
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We will show that the answer to this question is provided by the Yule-Walker 
equations. 

To synthesize them, first multiply the expression (6.82) by . As a result, we get 

 . (6.96) 

Let's replace the discrete variable in expression (6.96) by putting 

 . (6.97) 

We will get 

 . (6.98) 

Let's find the mathematical expectation from both parts of equation (6.98). We will get 

  (6.99) 

Considering the expression (6.90), from the expression (6.99) we have 

 (6.100) 

for all  from 1 to . 
But with , taking into account the expression (6.93), we get another equatio 

 . (6.101) 

The absence of mathematical expectation  calculation results in equations 

(6.100) and their presence in equation (6.101) in the form of white noise dispersion  is 
explained by the fact that, according to the properties of white noise, each of its impulses is 
correlated (interrelated) only with itself and not at all correlated with no other, even placed in 
time next to it. So 

 . (6.102) 

From equation (6.101), taking into account expression (6.91), we have 

. (6.103) 

So, if for the implementation of a stationary time series  of length N the estimated 

average value μ and variance  have already been calculated according to known formulas 

 , (6.104) 

 , (6.105) 

the coefficients  are somehow found and calculated according to the expression 
(6.92) of the autocovariance , then it is not difficult to find the dispersion of 

white noise  according to the expression (6.103). 
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Before giving the algorithm for obtaining the numerical values of the coefficients 
, let's divide all the equations of the system (6.100) by . 

As a result, we will get a system of equations no longer relative to autocovariances 
, but relative to autocorrelations , that is, a system 

  (6.106) 

or, in matrix form, 
 , (6.107) 

where the matrices ,  ,  have the form 

 ,  

 .  

In equations (6.107), the values of the coefficients  are unknown. 

To solve the system (6.107), we first define the matrix , which is the inverse of the 
matrix . Then we multiply the matrix equation (6.107) on the left by . As a result, we 
get 

 , (6.108) 
or 

 , (6.109) 
and finally 

 . (6.110) 

Equations (6.106), (6.107) are called Yule-Walker equations. Their solution in the 
form of (6.110) makes it possible to determine the vector  of coefficients 

 of the autoregression operator in the AR  model based on previously 

calculated autocorrelations  of the time series . 
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In the time series  model based on order p autoregression, only one current pulse of 
white noise  is involved in the formation of the current value of the series. It is natural to 
assume that if we subtract the weighted sum q of previous values of white noise from this 
impulse , we will get a model that will take into account more “subtle” moments of the 
random process and will more adequately reflect its properties, since in addition to 
autoregression, this model will also take into account the moving average of the process. 

Such a time series  model is called a moving average autoregression model 
(abbreviated: ARMA  model) and has the form 

 (6.111) 

By transferring all the members from  to the left side of equation (6.111) 
and performing already known transformations, we obtain the equation 

 , (6.112) 

in which the operators  and  are determined by expressions (6.81), (6.84). 
Equation (6.112) is the basic form of the time series  model based on ARMA . 
To identify this model, we need to determine  the unknowns, which are the 

coefficients  of the operator , the coefficients  of the operator 

, the mean  of the process  and the variance  of the white noise .  
All time series models constructed above were based on the condition of 

stationarity of these series. But in everyday life we constantly encounter non-stationary 
random processes. For example, these are the processes of starting or braking any 
technological equipment that implements a technological process of a stochastic nature. 

We will show that such non-stationary random processes, which, when discretized, 
turn into time series, can be adequately described using a model in which autoregression 
operators - an integrated moving average - are embedded. 

For their synthesis, let us assume that in the ARMA  model given by expression 
(6.112), the operator  has  multiple roots equal to unity. 

In this case, according to Viett's theorem, the operator  can be written in the 
form 

 , (6.113) 

where 
 . (6.114) 

Let's mark 
. (6.115) 

Taking into account expressions (6.113) and (6.115), equation (6.112) can be rewritten as 

 . (6.116) 

Since, according to the expression (6.63) 
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  (6.118) 

defines a new variable , which is associated with  the relation 

 . (6.119) 

Substituting expression (6.119) into equation (6.116), we get 

  (6.120) 

It is obvious that the expression (6.120) defines the ARMA  model with respect to 
, which can be rewritten as  

 (6.121)
 

Equations (6.119), (6.120) specify the model of a non-stationary time series  in the 
form of autoregression – integrated moving average order . Abbreviated: model 
ARIMA . 

We draw attention to the fact that the first difference  of values of any non-
stationary time series  has a lower degree of non-stationarity than the time series  itself. 

The second difference , which is the difference of the first differences  of this 
time series , will have an even smaller degree of non-stationarity. 

Increasing the order  of the difference , sooner or later we will reach its value 
, which will already be a relatively stationary time series . In fig. 18 provides a graphic 

interpretation of this fact. 
 

Figure 18 – Graphical interpretation transformation of the non-stationary time series   
into a stationary time series for its difference  
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It is clear that from the ARIMA  model (6.119), (6.120) we get the ARMA 
model, if . 

We will explain why the name of the ARIMA  model contains the word 
“integrated” in relation to the moving average. 

We remind that the inverse operator for  is the sum operator  (6.70). Therefore, 
having obtained  from equation (6.120), in order to move to the time series , it is 
necessary to d sum the coordinate  times, since, multiplying equation (6.119) on the left by 

, we have 

 , (6.122) 
or 

 , (6.123) 

from which, taking into account (6.70), we have 

 . (6.124) 

It is clear that the most difficult task when using the ARIMA  model is to 
determine the numerical value of the integration parameter d, or, in other words, to determine 
the number of differences that must be successively taken from a non-stationary time series 

 in order to transform it into a stationary series relative to some difference of this series. It 
is obvious that it must be solved by substituting the value  obtained by expression (6.124) 
and the experimental value of this coordinate into the criterion functional (6.52) and searching 
for the minimum value of this functional in the approximate interpretation. 
 
 

6.3 Examples of implementation of special operators 
 

First, we consider an example of the application of the direct (6.1) and inverse 
(6.20) Laplace operators, which are widely used in the analysis of processes in linear 
dynamic systems. 

Let the process in a linear dynamic system, at the input of which a signal  arrives 
and whose reaction to this signal is the output coordinate , be described by a differential 
equation 

   (6.125) 

which is a mathematical model of this process in the time domain under zero initial conditions 
(6.51). 

And let us find out what will be the nature of the response  of this dynamic system 
to the input signal 

 . (6.126) 

As you know, under zero initial conditions, the differential equation (6.125) cannot be 
solved by the classical method, since the system of equations for determining the integration 
constants for each of the exponents will have no solutions other than zero. But this differential 
equation (6.125) is easily solved if, using the direct Laplace operator, it is transformed into a 
complex plane, i.e., if the transformation 
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  (6.127) 

which is admissible since both the differential equation and the Laplace operator are linear. 
And then, applying the expression (6.10) and putting the operator equation (6.125) in brackets 

 and , we get the form 

  (6.128) 

which is easily transformed into an expression 

 . (6.129) 

Laplace-transforming the signal (6.126) using expression (6.6) under the condition that 
we have 

 .  (6.130) 

 
Substituting expression (6.130) into (6.129), we get 

   (6.131) 

or 

  (6.132) 

It is easy to see that the expression (6.132) is the Laplace-transformed response of our 
dynamic system, defined on the complex plane, to the input signal (6.126). And therefore, in 
order to find this reaction in the time domain, that is, to determine  it is necessary to use 
an inverse Laplace operator (6.132), which is also linear and therefore the expression will be 
fair 

  (6.133) 

The inverse Laplace operator in the expression (6.133) will be applied in the form of the 
decomposition theorem (6.22) if all the poles of the expression (6.133), i.e., the roots of the 
equation (6.23), which for the expression (6.133) will have the form 

    (6.134) 

will be different numbers (real or complex), or in the form (6.34), if there are multiples 
among the roots of equation (6.134). 

So the next step in the algorithm for applying the inverse Laplace operator is to 
determine the poles of the expression (6.133), or, which is the same thing, to determine the 
roots of the equation (6.134). It is quite obvious that in order to solve this equation of the 5th 
order, it is necessary to apply a suitable program in some application program package, for 
example, in PPP MathCAD or MALAB or Python. 

Applying one of these packages, we find that the roots of equation (6.134) will be: 
multiple root 

   (6.135) 
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with multiplicity of 2 and three simple roots 

 .  (6.136)  

So, since we have among the roots of the equation (6.134) and one multiple, we will 
apply the inverse Laplace operator in the form (6.34), for which we need to first find a 
polynomial  which for our conditions 

   (6.137) 

and, according to expression (6.32), will have the form 

 . (6.138) 

In addition, according to expressions (6.24) and (6.233), we will have 

 . (6.139) 

Taking into account the expressions (6.135)–(6.139) for our example, the inverse 
Laplace operator in the form (6.34) takes the form 

 . (6.140) 

Taking the derivative and writing the sum, from the expression (6.140) we will have 

    

(6.141)

 
 

And by substituting the numerical values of the poles from the expressions (6.135), 
(6.136) into the expression (6.141) and performing the corresponding calculations, we obtain 

 . (6.142) 

The second example that we consider is the example of solving the problem of 
synthesis of autoregression operator using experimentally defined values of the time 
series. 

This example is borrowed from our same textbook on mathematical methods of 
identification of dynamic systems. 

Therefore, let 10 values of the original coordinate of the object, recorded by us at the 
same intervals in the process of normal operation, were the following as shown in Table 2. 

 
Table 2 - Table Experimentally defined values of the original coordinate of the object 
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Let's build a model of this time series, suitable for the forecast of the following values, 
based on the autoregressions of the 1st, 2nd and 3rd orders of magnitude that look like 

   (6.143) 

   (6.144) 

   (6.145) 

where 
   (6.146) 

Before solving the problem of identification of these models and the choice of them, we 
calculate all the necessary parameters of the time row given by Table 2, using expressions 
(6.104), (6.105) and (6.92), (6.94). 

So, 

  (6.147) 

  (6.148) 

  (6.149) 

  (6.150) 

  (6.151) 

  (6.152) 

  (6.153) 

 . (6.154) 

Now we have all the necessary data to determine the matrices 

    (6.155) 

the use of autoregression models (6.143) - (6.145) is used. 
Since the model (6.143) then these matrices will look like it 

 . (6.156) 

Subituting (6.156) in (6.110) and given that in this case  we will have 

 ,  (6.157) 
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 .  (6.158) 

Since the model (6.144) the matrices for her will look like 

 , (6.159) 

And taking into account expressions (6.152), (6.153) - 

  (6.160) 

Since the model (6.145)  the matrices (6.155) will look like it 

  (6.161) 

And taking into account expressions (6.152), (6.153), (6.154) - 

  (6.162) 

Comparing the expressions (6.103) and (6.157), we see that to identify the model of 
autoregression (6.143) we have only to find a variance  of “white noise”  from which 
a computer program will form pulses  for this model. We will find this variance from the 
expression (6.103), substituting in which expressions (6.148), (6.149) and (6.158), we will get 

 . (6.163) 

So in this case the model of the stokastic component  of the original coordinate  
will look like 

  (6.164) 

And the value of the source coordinate  will be found from the expression (6.146), 
which after substitution of its value  from the expression (6.147) will look like 

 .  (6.165) 

Substituting in expression (6.165) value from Table 2, we find that 

 . (6.166) 

And if we want to prognoze the value of the source coordinate  of the object, then, 
first, we generate the computer program of the «white noise» . And let this value  be 
equal to the average deviation . We substitute this value  and  the 
expression (6.164) and get a numerical value  that in our case will be equal 

 . (6.167) 

And then the obtained numerical value is substituted into an expression (6.165) and find 
that 

 .  (6.168) 
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Similarly, using  and generating the next white noise pulse, we can predict at time 
 and value , , and then, using already obtained  and, predict and, however, 

it is clear that the more distant moments of time  we will use, the accuracy the forecast 
will decrease. 

But before using the 1-st order identified in the form of a 1-st order (6.164) to predict 
the following values of the source coordinate of the object, it is necessary to make sure that 
this model specifies sufficient accuracy of the forecast. And for this purpose it is necessary, 
using matrices (6.160), to identify the model of the time row given by table 2, in the form of 
autoregression of the 2-nd order (6.144) and compare the degree of accuracy of forecasting 
according to both models. 

And, of course, when processing large arrays of the values of the time series for the 
synthesis of autoregression operator requires all those calculations that we have made for the 
sake of clearly demonstrating their essence and structure, to perform in some software 
environment, in our case it is Python. 
 
 
 

6.4 Python programs for implementing tasks with special operators 
 

A Python program for solving problems related to the use of the direct Laplace operator 
to transform functions f(t) of a real variable t into a complex plane in the form of 
functions F(p) of a complex variable p 

(Program 21) 
In [1]: import sympy 
In [2]: from sympy import * 
In [3]: t = symbols ('t') 
In [4]: p = symbols ('p') 
In [5]: f = Function ('f')(t) 
In [6]: F = Function ('F')(p) 
In [7]: f = t 
In [8]: f1 = f*exp(-p*t) 
In [9]: F1 = integrate (f1,(t,0,oo)) 
In [10]: F1 
Out[10]:  
Piecewise((p**(-2), Abs(arg(p)) < pi/2), 
 (Integral(t*exp(-p*t), (t, 0, oo)), True)) 
In [11]: K = ((p**(-2), Abs(arg(p)) < pi/2), \ 
            (Integral(t*exp(-p*t), (t, 0, oo)), True)) 
In [12]: K[0] 
Out [12]: (p**(-2), Abs(arg(p)) < pi/2) 
In [13]: K[0][0] 
Out [13]: p**(-2) 
In [14]: F = K[0][0] 
In [15]: print(F) 
Out[15]: p**(-2) 
In [16]: f2 = exp (- 2*t) 
In [17]: f3 = f2*exp(-p*t) 
In [18]: F3 = integrate (f3,(t,0,oo)) 
In [19]: F3 
Out[19]:  
Piecewise((1/(2*(p/2 + 1)), Abs(arg(p)) <= pi/2), 
(Integral(exp(-2*t)*exp(-p*t), (t, 0, oo)), True)) 

In [20]: K1 = ((1/(2*(p/2 + 1)), Abs(arg(p))\ 
  <= pi/2), (Integral(exp(-2*t)*exp(-p*t), \ 

(t, 0, oo)), True)) 
In [21]: K1[0] 
Out [21]: (1/(2*(p/2 + 1)), Abs(arg(p)) <= pi/2) 
In [22]: K1[0][0] 
Out [22]: 1/(p+2) 
In [23]: F2 = K1[0][0] 
In [24]: print(F2) 
Out[24]: 1/(p+2) 
In [25]: f4 = f*f2*exp(-p*t) 
In [26]: F5 = integrate (f4,(t,0,oo)) 
In [27]: F5 
Out [27]: 
Piecewise((1/(4*(p/2 + 1)**2), Abs(arg(p)) \ 
<= pi/2),(Integral(t*exp(-2*t)*exp(-p*t),\ 
(t, 0, oo)), True)) 
In [28]: K2 = ((1/(4*(p/2 + 1)**2), Abs(arg(p))\ 
 <= pi/2), (Integral(t*exp(-2*t)*\ 
 exp(-p*t), (t, 0, oo)), True)) 
In [29]: K2[0] 
Out [29]: 
(1/(4*(p/2 + 1)**2), Abs(arg(p)) <= pi/2) 
In [30]: K2[0][0] 
Out [30]: 1/(p+2)**2 
In [31]: F4 = K2[0][0] 
In [32]: print(F4) 
Out[32]: 1/(p+2)**2 
In [33]: f5 = f*f2*sin (3*t) 

1111, yz
10=t 12z 12y 1313, yz
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In [34]: f6 = f5*exp(-p*t) 
In [35]: F6 = integrate (f6,(t,0,oo)) 
In [36]: F6 
Out[36]: 
Piecewise((6/((1 + 9/(p + 2)**2)**2*\ 
(p + 2)**3), 2*Abs(arg(p + 2)) < pi), 
(Integral(t*exp(-2*t)* \ 
exp(-p*t)*sin(3*t), (t, 0, oo)), True)) 
In [37]: K3 = ((6/((1 + 9/(p + 2)**2)**2*\ 
 (p + 2)**3), 2*Abs(arg(p + 2)) < pi), \ 
 (Integral(t*exp(-2*t)*exp(-p*t)*\ 
 sin(3*t), (t, 0, oo)), True)) 

In [38]: K3[0] 
Out [38]: ((6/((1 + 9/(p + 2)**2)**2*\ 
(p + 2)**3),2*Abs(arg(p + 2)) < pi)) 
In [39]: K3[0][0] 
Out [39]: 
6/((1 + 9/(p + 2)**2)**2*(p + 2)**3) 
In [40]: F7 = K3[0][0] 
In [41]: print(F7) 
Out[41]: 
6/((1 + 9/(p + 2)**2)**2*(p + 2)**3) 
 

 
End of program 21 

 
 
 
A Python program for solving problems related to the use of the inverse Laplace 
operator in the form of expansion formulas for the transformation of the functions F(p) 
of the complex variable p to the axis of the real variable t in the form of functions f(t) 

(Program 22) 
In [1]: import sympy 
In [2]: from sympy import * 
In [3]: t = symbols ('t') 
In [4]: p = symbols ('p') 
In [5]: x = Function ('x')(t) 
In [6]: y = Function ('y')(t) 
In [7]: C = Function ('C')(p) 
In [8]: D = Function ('D')(p) 
In [9]: W = Function ('W')(p) 
In [10]: X = Function ('X')(p)  
In [11]: Y = Function ('Y')(p)  
In [12]: D1 = Function ('D1')(p) 
In [13]: Y1 = Function ('Y1')(p,t) 
In [14]: Y2 = Function ('Y2')(p,t) 
In [15]: C = 2*p+4 
In [16]: D = p**2+7*p+12 
In [17]: W = C/D 
In [18]: W 
Out[18]:  
(2*p + 4)/(p**2 + 7*p + 12) 
In [19]: x = t 
In [20]: x1 = x*exp(-p*t) 
In [21]: X1 = Function ('X1')(p) 
In [22]: X1 = integrate (x1,(t,0,oo));X1 
Out[22]:  
Piecewise((p**(-2), Abs(arg(p)) < pi/2),  
(Integral(t*exp(-p*t), (t, 0, oo)), True)) 
In [23]: K1 = ((p**(-2), Abs(arg(p)) < pi/2), \ 
            (Integral(t*exp(-p*t), (t, 0, oo)), True))  
In [24]: K1[0] 
Out[24]: (p**(-2), Abs(arg(p)) < pi/2) 

In [25]: X = K1[0][0] 
In [26]: X 
Out[26]:  
p**(-2) 
In [27]: Y = W*X 
In [28]: Y 
Out[28]:  
(2*p + 4)/(p**2*(p**2 + 7*p + 12)) 
In [29]: C1 = Function ('C1')(p) 
In [29]: expr = Y 
In [30]: C1, D1 = fraction (expr) 
In [31]: print(C1) 
2*p + 4 
In [32]: print(D1) 
p**2*(p**2 + 7*p + 12) 
In [33]: D2 = Function ('D2')(p)  
In [34]: D2 = D1.diff(p) 
In [35]: D2 
Out[35]: 
p**2*(2*p + 7) + 2*p*(p**2 + 7*p + 12) 
In [36]: solveset (Eq(D1,0), p) 
Out[36]: 
FiniteSet(-4, -3, 0) 
In [37]: roots (Eq(D1,0), p) 
Out[37]: {-3: 1, -4: 1, 0: 2} 
In [38]: d0 ={ } 
In [39]: d0["a"]=-3 
In [40]: d0["b"]=-4 
In [41]: d0["c"]=0 
In [42]: d0 
Out[42]: {'a': -3, 'b': -4, 'c': 0} 
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In [43]: p1,p2,p3 = symbols('p1 p2 p3') 
In [44]: p1 = d0['a'] 
In [45]: p1 
Out[45]: -3 
In [46]: p2 = d0['b'] 
In [47]: p2 
Out[47]: -4 
In [48]: p3 = d0['c'] 
In [49]: p3 
Out[49]: 0 
In [50]: Y1=C1*exp(p*t)/D2 
In [51]: Y1 
Out[51]: 
(2*p + 4)*exp(p*t)/(p**2*(2*p + 7) +\ 
2*p*(p**2 + 7*p + 12)) 
In [52]: Y2 = diff(C1*(p-p3)**2*  \ 
  exp(p*t)/D1,p) 

In [53]: Y2 
Out[53]: 
t*(2*p + 4)*exp(p*t)/(p**2 + 7*p + 12)\ 
+ (-2*p - 7)*(2*p + 4)*exp(p*t)/(p**2 +7*p +12)**2\  
+ 2*exp(p*t)/(p**2 + 7*p + 12) 
In [54]: y = Y1.subs(p,p1)+Y1.subs(p,p2)+\ 
  Y2.subs(p,p3) 
In [55]: y 
Out[55]: 
t/3 - 1/36 - 2*exp(-3*t)/9 + exp(-4*t)/4 
In [56]: p11 = plot(x,(t,0,2),show=False,\ 
  line_color = 'c') 
In [57]: p22 = plot(y,(t,0,2),show=False,\ 
  line_color = 'r') 
In [58]: p11.extend(p22) 
In [59]: p11.show( ) 

 

 
Figure 19. Graphs of the input signal x(t) = t entering the dynamic system with a given 

transfer function W(p), and its output signal y(t) on time interval t ∈[0,2] 
 

End of program 22 
 
 
 
 
A Python program to solve a problem related autoregressive identification of the 
stationary time series 
𝒚𝒕={5.,8.,3.,4.,6.,3.,2.,7.,5.,4.,3.,6.,4.,5.,3.,8.,6.,4.,3.,5.,4.,2.,7.,4.,5.,3.,6.,3.,4.,5.},  
given at N points t ∈[0,N-1] with N=30, using the AR(3) model with the structure:  
𝒚𝒕 = 𝒃 + 𝒎𝒕,        𝒃 = 𝟏

𝑵
∑ 𝒚𝒊,𝑵
𝒊=𝟏         𝒎𝒕 = 𝒈𝟏𝒎𝒕−𝟏 + 𝒈𝟐𝒎𝒕−𝟐 + 𝒈𝟑𝒎𝒕−𝟑 + 𝒂𝒕 

and the Yule-Walker algorithm for determining its parameters 
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(Program 23): 
In [1]: import numpy as np 
In [2]: L=[5.,8.,3.,4.,6.,3.,2.,7.,5.,4.,3.,6.,4.,5., 
3.,8.,6.,4.,3.,5.,4.,2.,7.,4.,5.,3.,6.,3.,4.,5.] 
In [3]: N=30 
In [4]: def fun (x): 
    return np.sum(x) 
In [5]: fun(L) 
Out[5]: 137.0 
In [6]: b=_/N;b 
Out[6]: 4.566666666666666 
In [7]: b=b.round(3);b 
Out[7]: 4.567 
In [8]: L1=L-b;L1 
Out[8]:  
array([ 0.433,  3.433, -1.567, -0.567,  1.433, 
 -1.567, -2.567,  2.433,  0.433, -0.567, -1.567, 
  1.433, -0.567,  0.433, -1.567,  3.433, 
  1.433, -0.567, -1.567,  0.433, -0.567,  
-2.567,  2.433, -0.567,  0.433, -1.567,  1.433, 
 -1.567, -0.567,  0.433]) 
In [9]: def fun (x): 
    return np.dot(x,x) 
In [10]: fun(L1) 
Out[10]:  
77.36667 
In [11]: q0=_/N; q0 
Out[11]: 
 2.5788889999999998 
In [12]: q0=q0.round(3); q0 
Out[12]: 
 2.579 
In [13]: L2=L1[:-1];L2 
Out[13]:  
array([ 0.433,  3.433, -1.567, -0.567,  1.433,  
-1.567, -2.567,  2.433,  0.433, -0.567, -1.567, 
  1.433, -0.567,  0.433, -1.567,  3.433,  1.433,  
-0.567, -1.567,  0.433, -0.567, -2.567,  2.433,  
-0.567,  0.433, -1.567,  1.433, -1.567, -0.567]) 
In [14]: L5=L1[1:];L5 
Out[14]:  
array([ 3.433, -1.567, -0.567,  1.433, -1.567,  
-2.567,  2.433,  0.433, -0.567, -1.567,  1.433,  
-0.567,  0.433, -1.567,  3.433,  1.433,  -0.567, 
 -1.567,  0.433, -0.567, -2.567,  2.433, -0.567,  
 0.433, -1.567,  1.433, -1.567, -0.567,  0.433]) 
In [15]: def fun (x,y): 
    return np.dot(x,y) 
In [16]: fun(L2,L5) 
Out[16]: 
 -22.820818999999993 
In [17]: q1=_/(N-1); q1 
Out[17]: 
 -0.786924793103448 

In [18]: q1=q1.round(3);q1 
Out[18]: 
 -0.787 
In [19]: L3=L2[:-1];L3 
Out[19]:  
array([ 0.433,  3.433, -1.567, -0.567,  1.433,  
-1.567, -2.567,  2.433,  0.433, -0.567, -1.567,  
 1.433, -0.567,  0.433, -1.567,  3.433,  1.433,  
-0.567, -1.567,  0.433, -0.567, -2.567,  2.433, 
 -0.567,  0.433, -1.567,  1.433, -1.567]) 
In [20]: L6=L5[1:];L6 
Out[20]:  
array([-1.567, -0.567,  1.433, -1.567, -2.567, 
  2.433,  0.433, -0.567, -1.567,  1.433, -0.567, 
  0.433, -1.567,  3.433,  1.433, -0.567, -1.567, 
  0.433, -0.567, -2.567,  2.433, -0.567,  0.433, 
 -1.567,  1.433, -1.567, -0.567,  0.433]) 
In [21]: fun(L3,L6) 
Out[21]:  
-14.874308000000001 
In [22]: q2=_/(N-2);q2 
Out[22]: 
 -0.5312252857142857 
In [23]: q2=q2.round(3);q2 
Out[23]: -0.531 
In [24]: L4=L3[:-1];L4 
Out[24]:  
array([ 0.433,  3.433, -1.567, -0.567,  1.433,  
-1.567, -2.567,  2.433,  0.433, -0.567, -1.567,  
 1.433, -0.567,  0.433, -1.567,  3.433,  1.433,  
-0.567, -1.567,  0.433, -0.567, -2.567,  2.433, 
 -0.567,  0.433, -1.567,  1.433]) 
In [25]: L7=L6[1:];L7 
Out[25]:  
array([-0.567,  1.433, -1.567, -2.567,  2.433, 
  0.433, -0.567, -1.567,  1.433, -0.567,  0.433, 
 -1.567,  3.433,  1.433, -0.567, -1.567,  0.433, 
 -0.567, -2.567,  2.433, -0.567,  0.433, -1.567, 
  1.433, -1.567, -0.567,  0.433]) 
In [26]: fun(L4,L7) 
Out[26]:  
2.6702030000000008 
In [27]: q3=_/(N-3); q3 
Out[27]:  
0.09889640740740743 
In [28]: q3=q3.round(3); q3 
Out[28]:  
0.099 
In [29]: r0=q0/q0;r0 
Out[29]: 
 1.0 
In [30]: r1=q1/q0;r1 
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Out[30]: 
 -0.30515703761147733 
In [31]: r1=r1.round(3);r1 
Out[31]: 
 -0.305 
In [32]: r2=q2/q0;r2 
Out[32]: 
 -0.2058937572702598 
In [33]: r2=r2.round(3);r2 
Out[33]: 
 -0.206 
In [34]: r3=q3/q0;r3 
Out[34]: 
 0.038386971694455214 
In [35]: r3=r3.round(3);r3 
Out[35]: 
 0.038 
In [36]: L9=[r0,r1,r2,r3];L9 
Out[36]: 
 [1.0, -0.305, -0.206, 0.038] 
In [37]: import sympy 
In [38]: from sympy import* 
In [39]: r,r0,r1,r2,r3 = symbols('r r0 r1 r2 r3') 
In [40]: M = symbols('M') 
In [41]: M = Matrix([[r0,r1,r2],[r1,r0,r1], 
[r2,r1,r0]]);M 
Out[41]:  
Matrix([ 
[r0, r1, r2], 
[r1, r0, r1], 
[r2, r1, r0]]) 
In [42]: g,g1,g2,g3=symbols('g g1 g2 g3') 
In [43]: g = Matrix([g1,g2,g3]);g 
Out[43]:  
Matrix([ 
[g1], 
[g2], 
[g3]]) 
In [44]: M =M.subs([(r0,1),(r1,-0.305), 
(r2,-0.206)]);M 
Out[44]:  
Matrix([ 
[     1, -0.305, -0.206], 
[-0.305,      1, -0.305], 
[-0.206, -0.305,      1]]) 
In [45]: r=Matrix([r1,r2,r3]); r 
Out[45]:  
Matrix([ 
[r1], 
[r2], 
[r3]]) 
In [46]: r=r.subs([(r1,-0.305),(r2,-0.206), 
(r3,0.038)]); r 

Out[46]:  
Matrix([ 
[-0.305], 
[-0.206], 
[ 0.038]]) 
In [47]: B=simplify(M.inv());B 
Out[47]:  
Matrix([ 
[ 1.23702975377247, 0.501685993913973, 
  0.40784235742089],[0.501685993913973, 
  1.30602845628752, 0.501685993913973], 
[ 0.40784235742089, 0.501685993913973, 
  1.23702975377247]]) 
In [48]: g=B*r; g 
Out[48]:  
Matrix([ 
[-0.465143380064886], 
[-0.402992022370261], 
[-0.180732103116296]]) 
In [49]: g=g.evalf(3); g 
Out[49]:  
Matrix([ 
[-0.465], 
[-0.403], 
[-0.181]]) 
In [50]: g1=g[0,0]; g1 
Out[50]:  
-0.465 
In [51]: g2=g[1,0]; g2 
Out[51]: 
-0.403 
In [52]: g3=g[2,0]; g3 
Out[52]: 
-0.181 
In [53]: a = symbols ('a') 
In [54]: ska = symbols ('ska') 
In [55]: ska = q0-g1*q1-g2*q2-g3*q3; ska 
Out[55]: 
2.01681854248047 
In [56]: skv = symbols ('skv') 
In [57]: skv = ska**(0.5); skv 
Out[57]: 
1.42014736646605 
In [58]: skv = skv.evalf(3); skv 
Out[58]: 
1.42 
In [59]: a11,a22 = symbols ('a11 a22') 
In [60]: a11 = -3*skv; a11 
Out[60]: 
-4.26 
In [61]: a22 = 3*skv; a22 
Out[61]: 
4.26 
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In [62]: import random as rnd 
In [63]: m = symbols('m:10'); 
Out[63]: 
(m0, m1, m2, m3, m4, m5, m6, m7, m8, m9) 
In [64]: l = symbols ('l:10');l 
Out[64]: 
(l0, l1, l2, l3, l4, l5, l6, l7, l8, l9) 
In [65]: m=list(m);m 
Out[65]: 
[m0, m1, m2, m3, m4, m5, m6, m7, m8, m9] 
In [66]: l=list(l);l 
Out[66]: 
[l0, l1, l2, l3, l4, l5, l6, l7, l8, l9] 
In [67]: d = symbols ('d:10'); d 
Out[67]: 
(d0,d1,d2,d3,d4,d5,d6,d7,d8,d9) 
In [68]: d = list (d); d 
Out[68]: 
[d0,d1,d2,d3,d4,d5,d6,d7,d8,d9] 
In [69]: d[0] = rnd.uniform (-4.26,4.26); d[0] 
Out[69]: 
3.7878324717658174 
In [70]: m[0]=g1*L1[29]+g2*L1[28]+\ 
            g3*L1[27]+ d[0]; m[0] 
Out[70]: 
4.09812879744941 
In [71]: L1 = np.append(L1,[m[0]]);L1 
Out[71]: 
array([0.43299999999999983, 3.433, 
-1.5670000000000002, -0.5670000000000002, 
1.4329999999999998, -1.5670000000000002, 
-2.567, 2.433, 0.43299999999999983, 
-0.5670000000000002, -1.5670000000000002, 
1.4329999999999998, -0.5670000000000002, 
0.43299999999999983, -1.5670000000000002, 
3.433,  1.4329999999999998, 
-0.5670000000000002, -1.5670000000000002, 
0.43299999999999983, -0.5670000000000002, 
-2.567, 2.433, -0.5670000000000002, 
0.43299999999999983, -1.5670000000000002, 
1.4329999999999998, -1.5670000000000002, 
-0.5670000000000002,  0.43299999999999983 
4.09812879744941], dtype=object) 
In [72]: l[0]=b+m[0]; l[0] 
Out[72]: 
8.66512879744941 
In [73]: L = np.append(L,[l[0]]);L 
Out[73]: 
array([5.0, 8.0, 3.0, 4.0, 6.0, 3.0, 2.0, 7.0, 5.0, 
4.0, 3.0, 6.0, 4.0, 5.0, 3.0, 8.0, 6.0, 4.0, 3.0, 
5.0, 4.0, 2.0, 7.0, 4.0, 5.0, 3.0, 6.0, 3.0, 4.0, 
5.0, 8.66512879744941], dtype=object) 
In [74]: d[1] = rnd.uniform (-4.26,4.26); d[1] 
 

Out[74]: 
-2.587298897242724 
In [75]: m[1]= g1*L1[30]+g2*L1[29]+\ 
            g3*L1[28]+ d[1]; m[1] 
Out[75]: 
-2.08074576204602 
In [76]: L1 = np.append(L1,[m[1]]) 
In [77]: l[1]=b+m[1]; l[1] 
Out[77]: 
2.48625423795398 
In [78]: L=np.append(L,[l[1]]) 
In [79]: d[2] = rnd.uniform (-4.26,4.26); d[2] 
Out[79]: 
0.8071389548290568 
In [80]: m[2]= g1*L1[31]+g2*L1[30]+\ 
            g3*L1[29]+ d[2]; m[2] 
Out[80]: 
0.0451337059883733 
In [81]: L1 = np.append(L1,[m[2]]) 
In [82]: l[2]=b+m[2]; l[2] 
Out[82]: 
4.61213370598837 
In [83]: L=np.append(L,[l[2]]) 
In [84]: d[3] = rnd.uniform (-4.26,4.26); d[3] 
Out[84]: 
3.5146713080878706 
In [85]: m[3]= g1*L1[32]+g2*L1[31]+\ 
            g3*L1[30]+ d[3]; m[3] 
Out[85]: 
3.59161472387185 
In [86]: L1 = np.append(L1,[m[3]]) 
In [87]: l[3]=b+m[3]; l[3] 
Out[87]: 
8.15861472387185 
In [88]: L=np.append(L,[l[3]]) 
In [89]: d[4] = rnd.uniform (-4.26,4.26); d[4] 
Out[89]: 
3.332153915638866 
In [90]: m[4]= g1*L1[33]+g2*L1[32]+\ 
            g3*L1[31]+ d[4]; m[4] 
Out[90]: 
0.178801469969288 
In [91]: L1 = np.append(L1,[m[4]]) 
In [92]: l[4]=b+m[4]; l[4] 
Out[92]: 
4.74580146996929 
In [93]: L=np.append(L,[l[4]]) 
In [94]: d[5] = rnd.uniform (-4.26,4.26); d[5] 
Out[94]: 
2.867785147080328 
In [95]: m[5]= g1*L1[34]+g2*L1[33]+\ 
            g3*L1[32]+ d[5]; m[5] 
Out[95]: 
1.32898394299138 
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In [96]: L1 = np.append(L1,[m[5]]) 
In [97]: l[5]=b+m[5]; l[5] 
Out[97]: 
5.89598394299138 
In [98]: L=np.append(L,[l[5]]) 
In [99]: d[6] = rnd.uniform (-4.26,4.26); d[6] 
Out[99]: 
1.69270588124252 
In [100]: m[6]= g1*L1[35]+g2*L1[34]+\ 
              g3*L1[33]+ d[6]; m[6] 
Out[100]: 
-0.471995713797095 
In [101]: L1 = np.append(L1,[m[6]]) 
In [102]: l[6]=b+m[6]; l[6] 
Out[102]: 
4.09500428620290 
In [103]: L=np.append(L,[l[6]]) 
In [104]: d[7] = rnd.uniform (-4.26,4.26); d[7] 
Out[104]: 
0.10021632009046666 
In [105]: m[7]= g1*L1[36]+g2*L1[35]+\ 
              g3*L1[34]+ d[7]; m[7] 
Out[105]: 
-0.248149939266434 
In [106]: L1 = np.append(L1,[m[7]]) 
In [107]: l[7]=b+m[7]; l[7] 
Out[107]: 
4.31885006073357 

In [108]: L=np.append(L,[l[7]]) 
In [109]: d[8] = rnd.uniform (-4.26,4.26); d[8] 
Out[109]: 
-2.232660689069062 
In [110]: m[8]= g1*L1[37]+g2*L1[36]+\ 
              g3*L1[35]+ d[8]; m[8] 
Out[110]: 
-2.16719334714070 
In [111]: L1 = np.append(L1,[m[8]]) 
In [112]: l[8]=b+m[8]; l[8] 
Out[112]: 
2.39980665285930 
In [113]: L=np.append(L,[l[8]]) 
In [114]: d[9] = rnd.uniform (-4.26,4.26); d[9] 
Out[114]: 
1.544009122634895 
In [115]: m[9]= g1*L1[38]+g2*L1[37]+\ 
              g3*L1[36]+ d[9]; m[9] 
Out[115]: 
2.73738643318719 
In [116]: L1 = np.append(L1,[m[9]]) 
In [117]: l[9]=b+m[9]; l[9] 
Out[117]: 
7.30438643318719 
In [118]: L=np.append(L,[l[9]]) 
In [119]: import matplotlib 
In [120]: import matplotlib.pyplot as plt 
In [121]: plt.plot(L1) 

 

 
 

Figure 20. The graph of the time series 𝒚𝒕, which in the range t ∈[0,30] is filled with 
experimentally obtained values, and outside this range is filled with predicted values 

obtained using an autoregression model identified using experimentally obtained values 
        End of program 23. 
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A Python program to solve a problem related to autoregressive modeling of non-stationary 
time series 𝒚𝒕={ 5.,8.,3.,4.,6.,8.,10.,7.,6.,9.,12.,8.,11.,15.,12.,10., 7.,8.,12.,15., 18.,20.,17., 
14.,15.,17.,16.,19.,22.,25.]}, given at N points t ∈[0,N-1] with N=30, using the ARIMA(3,0,2) 
model with the structure: 
   𝒗𝒕 = 𝒚𝒕 − 𝒚𝒕−𝟏, 𝒘𝒕 = 𝒗𝒕 − 𝒗𝒕−𝟏, 
   𝒘𝒕 = 𝒈𝟏𝒘𝒕−𝟏 + 𝒈𝟐𝒘𝒕−𝟐 + 𝒈𝟑𝒘𝒕−𝟑 + 𝒂𝒕, 
   𝒚𝒌 = 𝒚−𝟏 + ∑ 𝒗𝒕𝒌

𝒕=𝟎 ,  𝒗𝒌 = 𝒗−𝟏 + ∑ 𝒘𝒕
𝒌
𝒕=𝟎  

and the method of its identification in the classical form 
(Program 24): 

In [1]: import numpy as np 
In [2]: L=[5.,8.,3.,4.,6.,8.,10.,7.,6.,9.,12.,8.,\ 
11.,15.,12.,10.,7.,8.,12.,15.,18.,20.,17.,14., 
15.,17.,16.,19.,22.,25.] 
In [3]: N=30 
In [4]: L1 = np.diff(L);L1 
Out[4]:  
array([ 3., -5.,  1.,  2.,  2.,  2., -3., -1.,  3.,  3., \ 
-4.,  3.,  4., -3., -2., -3.,  1.,  4.,  3.,  3.,  2., -3.,\ 
 -3.,  1.,  2., -1.,  3.,  3.,  3.]) 
In [5]: def fun (x): 
    return np.sum(x) 
In [6]: fun(L1) 
Out[6]: 20.0 
In [7]: _/(N-1) 
In [8]: L11=np.diff(L1);L11 
Out[8]:  
array([-8.,  6.,  1.,  0.,  0., -5.,  2.,  4.,  0.,\ 
 -7.,  7.,  1., -7., 1., -1.,  4.,  3., -1.,  0., -1.,\ 
 -5.,  0.,  4.,  1., -3.,  4.,  0.,  0.]) 
In [9]: fun(L11) 
Out[9]: 0.0 
In [10]: def fun (x): 
    return np.dot(x,x) 
In [11]: fun(L11) 
Out[11]:  
390.0 
In [12]: q0=_/(N-2); q0 
Out[12]: 
13.928571428571429 
In [13]: q0=q0.round(3);q0 
Out[13]:  
13.929 
In [14]: L2=L11[:-1] 
In [15]: L5=L11[1:] 
In [16]: def fun (x,y): 
    return np.dot(x,y) 
In [17]: fun(L2,L5) 
Out[17]: 
-102.0 
In [18]: q1=_/(N-3); q1 
Out[18]: 
-3.7777777777777777 

In [19]: q1=q1.round(3);q1 
Out[19]: 
-3.778 
In [20]: L3=L2[:-1] 
In [21]: L6=L5[1:] 
In [22]: fun(L3,L6) 
Out[22]:  
-134.0 
In [23]: q2=_/(N-4);q2 
Out[23]: 
-5.153846153846154 
In [24]: q2=q2.round(3);q2 
Out[24]:  
-5.154 
In [25]: L4=L3[:-1] 
In [26]: L7=L6[1:] 
In [27]: fun(L4,L7) 
Out[27]:  
49.0 
In [28]: q3=_/(N-5); q3 
Out[28]:  
1.96 
In [29]: r0=q0/q0;r0 
Out[29]: 
 1.0 
In [30]: r1=q1/q0;r1 
Out[30]: 
-0.29059829059829057 
In [31]: r1=r1.round(3);r1 
Out[31]: 
-0.291 
In [32]: r2=q2/q0;r2 
Out[32]: 
-0.3964615384615385 
In [33]: r2=r2.round(3);r2 
Out[33]: 
-0.396 
In [34]: r3=q3/q0;r3 
Out[34]: 
0.15076923076923077 
In [35]: r3=r3.round(3);r3 
Out[35]: 
0.151 
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In [36]: L9=[r0,r1,r2,r3];L9 
Out[36]: 
[1.0, -0.291, -0.396, 0.151] 
In [37]: import sympy 
In [38]: from sympy import* 
In [39]: r,r0,r1,r2,r3 = symbols('r r0 r1 r2 r3') 
In [40]: M = symbols('M') 
In [41]: M = Matrix([[r0,r1,r2],[r1,r0,r1], 
[r2,r1,r0]]);M 
Out[41]:  
Matrix([ 
[r0, r1, r2], 
[r1, r0, r1], 
[r2, r1, r0]]) 
In [42]: g,g1,g2,g3=symbols('g g1 g2 g3') 
In [43]: g = Matrix([g1,g2,g3]);g 
Out[43]:  
Matrix([ 
[g1], 
[g2], 
[g3]]) 
In [44]: M =M.subs([(r0,1),(r1,-0.291), 
(r2,-0.396)]);M 
Out[44]:  
Matrix([ 
[     1, -0.291, -0.396 ], 
[ -0.291,      1, -0.291], 
[-0.396, -0.291,      1 ]]) 
In [45]: r=Matrix([r1,r2,r3]); r 
Out[45]:  
Matrix([ 
[r1], 
[r2], 
[r3]]) 
In [46]: r=r.subs([(r1,-0.291),(r2,-0.396), 
(r3,0.151)]); r 
Out[46]:  
Matrix([ 
[ -0.291], 
[ -0.396], 
[ 0.151]]) 
In [47]: B=simplify(M.inv());B 
Out[47]:  
Matrix([ 
[ 1.50854880637025, 0.669522683244447, \ 
0.792216428146752],[0.669522683244447, \ 
 1.38966220164827, 0.669522683244447], 
[0.792216428146752, 0.669522683244447, \ 
 1.50854880637025]]) 
In [48]: g=B*r; g 
Out[48]:  
 

Matrix([ 
[ -0.584494004568384], 
[-0.644039407506937], 
[-0.267875093393598 ]]) 
In [49]: g=g.evalf(3); g 
Out[49]:  
Matrix([ 
[-0.584 ], 
[ -0.644], 
[ -0.268]]) 
In [50]: g1=g[0,0]; g1 
Out[50]:  
-0.584 
In [51]: g2=g[1,0]; g2 
Out[51]:  
-0.644 
In [52]: g3=g[2,0]; g3 
Out[52]:  
-0.268 
In [53]: a = symbols ('a') 
In [54]: ska = symbols ('ska') 
In [55]: ska = q0-g1*q1-g2*q2-g3*q3; ska 
Out[55]:  
7.99764599609375 
In [56]: skv = symbols ('skv') 
In [57]: skv = ska**(0.5); skv 
Out[57]: 
2.82801096109859 
In [58]: skv = skv.evalf(3); skv 
Out[58]: 
2.83 
In [59]: a11,a22 = symbols ('a11 a22') 
In [60]: a11 = -2*skv; a11 
Out[60]: 
-5.66 
In [61]: a22 = 2*skv; a22 
Out[61]: 
5.66 
In [62]: import random as rnd 
In [63]: w = symbols('w:10');w 
Out[63]: 
(w0, w1, w2, w3, w4, w5, w6, w7, w8, w9) 
In [64]: v = symbols ('v:10');v 
Out[64]: 
(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9) 
In [65]: w=list(w);w 
Out[65]: 
[w0, w1, w2, w3, w4, w5, w6, w7, w8, w9] 
In [66]: v=list(v);v 
Out[66]: 
[v0, v1, v2, v3, v4, v5, v6, v7, v8, v9] 
In [67]: d = symbols ('d:10'); d 
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Out[67]: 
(d0,d1,d2,d3,d4,d5,d6,d7,d8,d9) 
In [68]: d = list (d); d 
Out[68]: 
[d0,d1,d2,d3,d4,d5,d6,d7,d8,d9] 
In [69]: y = symbols ('y:10');y 
Out[69]: 
(y0, y1, y2, y3, y4, y5, y6, y7, y8, y9) 
In [70]: y=list(y);y 
Out[70]: 
[y0, y1, y2, y3, y4, y5, y6, y7, y8, y9] 
In [71]: L21=[ ] 
In [72]: L22=[ ] 
In [73]: L23=[ ] 
In [74]: d[0] = rnd.uniform (-5.66,5.66); d[0] 
Out[74]: 
-3.949689744213309 
In [75]: w[0]=g1*L11[27]+g2*L11[26]+\ 
            g3*L11[25]+ d[0]; w[0] 
Out[75]: 
-5.02122294733831 
In [76]: L23.append(w[0]);L23 
Out[76]: 
[-5.02122294733831] 
In [77]: v[0]=L1[28]+w[0];v[0] 
Out[77]: 
-2.02122294733831 
In [78]: L22.append(v[0]);L22 
Out[78]: 
[-2.02122294733831] 
In [79]: y[0]=L[29]+v[0];y[0] 
Out[79]: 
22.9787770526617 
In [80]: L21.append(y[0]); L21 
Out[80]: 
[22.9787770526617] 
In [81]: d[1] = rnd.uniform (-5.66,5.66); d[1] 
Out[81]: 
-0.35599763798745787 
In [82]: w[1]=g1*L23[0]+g2*L11[27]+\ 
            g3*L11[26]+ d[1]; w[1] 
Out[82]: 
2.57876987566682 
In [83]: L23.append(w[1]);L23 
Out[83]: 
[-5.02122294733831, 2.57876987566682] 
In [84]: v[1]=L22[0]+w[1];v[1] 
Out[84]: 
0.557546928328509 
In [85]: L22.append(v[1]);L22 
Out[85]: 
[-2.02122294733831, 0.557546928328509] 

In [86]: y[1]=L21[0]+v[1];y[1] 
Out[86]: 
23.5363239809902 
In [87]: L21.append(y[1]);L21 
Out[87]: 
[22.9787770526617, 23.5363239809902] 
In [88]: d[2] = rnd.uniform (-5.66,5.66); d[2] 
Out[88]: 
5.4505096830373745 
In [89]: w[2]=g1*L23[1]+g2*L23[0]+\ 
            g3*L11[27]+ d[2]; w[2] 
Out[89]: 
7.17717253770830 
In [90]: L23.append(w[2]);L23 
Out[90]: 
[-5.02122294733831, 2.57876987566682,\ 
7.17717253770830] 
In [91]: v[2]=L22[1]+w[2];v[2] 
Out[91]: 
7.73471946603681 
In [92]: L22.append(v[2]);L22 
Out[92]: 
[-2.02122294733831, 0.557546928328509, \ 
7.73471946603681] 
In [93]: y[2]=L21[1]+v[2];y[2] 
Out[93]: 
31.2710434470270 
In [94]: L21.append(y[2]);L21 
Out[94]: 
[22.9787770526617, 23.5363239809902,\ 
31.2710434470270] 
In [95]: d[3] = rnd.uniform (-5.66,5.66); d[3] 
Out[95]: 
1.5127310202924091 
In [96]: w[3]=g1*L23[2]+g2*L23[1]+\ 
            g3*L23[0]+ d[3]; w[3] 
Out[96]: 
-2.99786690654250 
In [97]: L23.append(w[3]);L23 
Out[97]: 
[-5.02122294733831, 2.57876987566682, \ 
7.17717253770830, -2.99786690654250] 
In [98]: v[3]=L22[2]+w[3];v[3] 
Out[98]: 
4.73685255949431 
In [99]: L22.append(v[3]);L22 
Out[99]: 
[-2.02122294733831, 0.557546928328509, \ 
7.73471946603681, 4.73685255949431] 
In [100]: y[3]=L21[2]+v[3];y[3] 
Out[100]: 
36.0078960065213 
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In [101]: L21.append(y[3]);L21 
Out[101]: 
[22.9787770526617, 23.5363239809902, \ 
31.2710434470270, 36.0078960065213] 
In [102]: d[4] = rnd.uniform (-5.66,5.66); d[4] 
Out[102]: 
-2.938526432470273 
In [103]: w[4]=g1*L23[3]+g2*L23[2]+\ 
              g3*L23[1]+ d[4]; w[4] 
Out[103]: 
-6.49957209318491 
In [104]: L23.append(w[4]);L23 
Out[104]: 
[-5.02122294733831, 2.57876987566682, 
7.17717253770830, -2.99786690654250, 
-6.49957209318491] 
In [105]: v[4]=L22[3]+w[4];v[4] 
Out[105]: 

-1.76271953369060 
In [106]: L22.append(v[4]);L22 
Out[106]: 
[-2.02122294733831, 0.557546928328509, 
7.73471946603681, 4.73685255949431, 
-1.76271953369060] 
In [107]: y[4]=L21[3]+v[4];y[4] 
Out[107]: 
34.2451764728307 
In [108]: L21.append(y[4]);L21 
Out[108]: 
[22.9787770526617, 23.5363239809902, 
31.2710434470270, 36.0078960065213, 
34.2451764728307] 
In [109]: L555 = L+L21 
In [110]: import matplotlib 
In [111]: import matplotlib.pyplot as plt 
In [112]: plt.plot(L555) 

 

 
 

Figure 21. The graph of the time series y_t, which in the range t∈[0,30] is filled with 
experimentally obtained values, and outside this range is filled with forecast values 
obtained using the ARIMA (3,0,2) model, identified using experimental – obtained 

values. 
 

End of program 24. 
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6.5 Tasks for self-testing 
 
1. What is the Laplace operator? 
2. What properties of the Laplace operator do you know? 
3. What are the main advantages of image analysis? 
4. What are the Laplace maps of the derivative of a continuous function and its integral? 
5. How to determine the transfer function of the system, if the differential equation that 

describes the processes in this system is known? 
6. Define transient and transient transient characteristics of a linear dynamic system. 
7. What is a single jump and what is its schedule? 
8. What is a unit impulse and what are its properties do you know? 
9. How are the Laplace images of transient and impulse transient characteristics of a system 

related to the transfer function of this system? 
10. Prove that the impulse transient characteristic of the system is a derivative of its transient 

characteristic. 
11. Given the transfer function of a linear dynamic system, how to reproduce the differential 

equation that describes the processes in this system? 
12. What is the inverse Laplace operator? What forms of its implementation do you know? 
13. How to determine the original by its known image? 
14. What is a “time series”? Give examples of stationary and non-stationary time series. 
15. Define the backward and forward shift operators, the difference operator and the sum 

operator. 
16. What is a linear filter operator? 
17. What is a white noise? What are its main properties? 
18. What are regression and autoregression? What form do their operators have? 
19. Synthesize a time series model in the form of autoregression. 
20. How are the linear filter operator and the autoregressive operator for time series related? 
21. What are the moving average of a time series and the moving average operator? 
22. Define autocovariance and autocorrelation of a time series. How to find their numerical 

values? What are their main properties do you know? 
23. Why are the Yule-Walker equations needed and how are they derived? 
24. How to solve the Yule-Walker equation? 
25. According to the implementation of the time series, synthesize its model in the form of 

autoregression with the identification of this model 
26. Build a time series model in the form of autoregression - moving average. 
27. How can a non-stationary time series be transformed into a stationary one? 
28. Build a model of a non-stationary time series in the form of autoregression - integrated 

moving average. 
 
 



128 

 
References 

 
1. Mokin B. I. Functional analysis adapted to applied problems in the field   of information 

technology: a textbook  . B. I. Mokin, V. B. Mokin, О. B. Mokin. – Vinnytsia: VNTU, 
2020 – 192 p. 

2. Mokin B. I.  Students textbook to learn how to solve functional analysis problems in 
Python, part 1 / B. I. Mokin, V. B. Mokin, О. B. Mokin. – Vinnytsia: VNTU, 2022. – 
124 p.  

3. Mokin B. I.  Students textbook to learn how to solve problems in functional analysis in 
Python, part 2 / B. I. Mokin, V. B. Mokin, О. B. Mokin. – Vinnytsia: VNTU, 2023. – 
144 p.  

4. Box George E.P. TIME SERIES ANALYSIS. Forecasting and control. / George E. P 
Box, Gwilym M. Jenkins. - HOLDEN-DAY: San Francisko, Cambridge, London, 
Amsterdam, 1970. – 532 p.  

5. Lipman. Calculus. / L. Bers. – HOLT, RINENART AND WINSTON, INC, 1969. – 
488 p. 

6. Bendat Julius .S. MEASUREMENT AND ANALYSIS OF RANDOM DATA./ Julius S.  
Bendat, Allan G. Piersol. – JOHN WILEY & SONS: New York-London-Sydney, 1967,  
408 p. 

7. Richard. INTRODUCTION TO MATRIX ANALYSIS. / R. Bellman. – MCGRAW-
HILL BOOK COMPANY, INC: New York Toronto London, 1960. – 352 p.  

8. Zgurovsky M. Z. Fundamentals of system analysis. / М. Z. Zgurovsky, 
N. D. Pankratova. – K.: Publishing group BHV, 2007. – 546 p. 

9. Mokin B. I.  Mathematical methods of identification of dynamic systems:  textbook.  / 
B. I. Mokin, V. B. Mokin, О. B. Mokin. – Vinnytsia: VNTU, 2010. – 260 p. 

10. Mokin B. I.  Theory of automatic control, methodology and practice of optimization: 
textbook./ / B. I. Mokin, V. B. Mokin, О. B. Mokin. – Vinnytsia: VNTU, 2013. – 210 p. 

11.  Nikolaev A. G. Functional analysis : textbook./ A. G. Nikolaev,  T. V. Rvacheva, 
А. I. Soloviev. – Kharkiv: HAI, 2008. – 164 p. 

12.   Functional analysis: a textbook. / S. А. Us. – Dnipropetrovsk: National University of 
Mining, 2013. – 236 p. – access at : 
ir.nmu.org.ua/handle/123456789/3496/CD266.pdf?sequence =1 

13. Polak E. COMPUTATIONAL METHODS IN OPTIMIZATION./ E. Polak. – Academic  
Press: New York, London, 1971. – 344 p. 

14.   Verlan A. F. Modeling of control systems in MATLAB environment : textbook   / 
A. F. Verlan, І. О. Goroshko, D. E. Kontreras, V. А. Fedorchuk, V. F. Yuzvenko –  К. : 
CCS АPSU, 2002. – 68 p 

15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108753/  
16. http://scipy-lectures.org/packages/sympy.html#integration 
17. https://drive.google.com/open?id=1csncEhe5s9z_bkd4tkzNXX6UDnp3jKYv 
18. Python. [Electronic resource]. access at: https://www.python.org//downloads/. 
19. Briggs Jason R. Python for kids (a fun introduction to programming). (English translator 

Oleksandra Hordiychuk). – Lviv: Old Lion Publishing House, 2019. – 400 p. 
20. Dolia P.G. Introduction to Scientific Python. / P.G.Dolia.- Kharkiv: KNU named after 

Karazin, 2016. – 265 p. 
21. Mokin B. I.  On one of the approaches to the approximate calculation of Stiltjes and 

Lebesgue integrals in Python in problems of system analysis with discrete models / 
B. I. Mokin, О. B. Mokin,  D. О. Shalagai. – Visnyk of Vinnytsia Politechnic Institute, 
2021, №3 – P. 61-68. 

 
 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108753/
http://scipy-lectures.org/packages/sympy.html#integration
https://drive.google.com/open?id=1csncEhe5s9z_bkd4tkzNXX6UDnp3jKYv


129 

Електронне навчальне видання 
 
 

Мокін Борис Іванович, 
Мокін Віталій Борисович, 

Мокін Олександр Борисович 
 
 

Functional analysis in information technologies 
 

(Функціональний аналіз в інформаційних технологіях) 
(англ. мовою) 

 
Підручник 

 
 
Рукопис підготував Б. І. Мокін 
 
Редактор М. Г. Прадівлянний 
 
Оригінал-макет підготовлено у Редакційно-видавничому відділі ВНТУ  
 
 
 
 
 
 
 
 
 
 

Підписано до видання 2.04.2024 р. 
Гарнітура Times New Roman, Arial Narrow.  

Зам. № P2024-073 
 
 
 

Видавець та виготовлювач  
Вінницький національний технічний університет, 

редакційно-видавничий відділ. 
ВНТУ, ГНК, к. 114. Хмельницьке шосе, 95, 

м. Вінниця, 21021. 
press.vntu.edu.ua; 

Email: kivc.vntu@gmail.com 
Свідоцтво суб’єкта видавничої справи 

 



<<

  /ASCII85EncodePages false

  /AllowPSXObjects false

  /AllowTransparency false

  /AlwaysEmbed [

    true

  ]

  /AntiAliasColorImages false

  /AntiAliasGrayImages false

  /AntiAliasMonoImages false

  /AutoFilterColorImages true

  /AutoFilterGrayImages true

  /AutoPositionEPSFiles true

  /AutoRotatePages /All

  /Binding /Left

  /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Warning

  /CheckCompliance [

    /None

  ]

  /ColorACSImageDict <<

    /HSamples [

      1

      1

      1

      1

    ]

    /QFactor 0.15000

    /VSamples [

      1

      1

      1

      1

    ]

  >>

  /ColorConversionStrategy /LeaveColorUnchanged

  /ColorImageAutoFilterStrategy /JPEG

  /ColorImageDepth -1

  /ColorImageDict <<

    /HSamples [

      1

      1

      1

      1

    ]

    /QFactor 0.15000

    /VSamples [

      1

      1

      1

      1

    ]

  >>

  /ColorImageDownsampleThreshold 1.50000

  /ColorImageDownsampleType /Bicubic

  /ColorImageFilter /DCTEncode

  /ColorImageMinDownsampleDepth 1

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /ColorImageResolution 300

  /ColorSettingsFile ()

  /CompatibilityLevel 1.6

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /CreateJDFFile false

  /CreateJobTicket false

  /CropColorImages false

  /CropGrayImages false

  /CropMonoImages false

  /DSCReportingLevel 0

  /DefaultRenderingIntent /Default

  /Description <<



  >>

  /DetectBlends true

  /DetectCurves 0

  /DoThumbnails false

  /DownsampleColorImages true

  /DownsampleGrayImages true

  /DownsampleMonoImages true

  /EmbedAllFonts true

  /EmbedJobOptions true

  /EmbedOpenType false

  /EmitDSCWarnings false

  /EncodeColorImages true

  /EncodeGrayImages true

  /EncodeMonoImages true

  /EndPage -1

  /GrayACSImageDict <<

    /HSamples [

      1

      1

      1

      1

    ]

    /QFactor 0.15000

    /VSamples [

      1

      1

      1

      1

    ]

  >>

  /GrayImageAutoFilterStrategy /JPEG

  /GrayImageDepth -1

  /GrayImageDict <<

    /HSamples [

      1

      1

      1

      1

    ]

    /QFactor 0.15000

    /VSamples [

      1

      1

      1

      1

    ]

  >>

  /GrayImageDownsampleThreshold 1.50000

  /GrayImageDownsampleType /Bicubic

  /GrayImageFilter /DCTEncode

  /GrayImageMinDownsampleDepth 2

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /GrayImageResolution 300

  /ImageMemory 1048576

  /JPEG2000ColorACSImageDict <<

    /Quality 30

    /TileHeight 256

    /TileWidth 256

  >>

  /JPEG2000ColorImageDict <<

    /Quality 30

    /TileHeight 256

    /TileWidth 256

  >>

  /JPEG2000GrayACSImageDict <<

    /Quality 30

    /TileHeight 256

    /TileWidth 256

  >>

  /JPEG2000GrayImageDict <<

    /Quality 30

    /TileHeight 256

    /TileWidth 256

  >>

  /LockDistillerParams false

  /MaxSubsetPct 1

  /MonoImageDepth -1

  /MonoImageDict <<

    /K -1

  >>

  /MonoImageDownsampleThreshold 1.50000

  /MonoImageDownsampleType /Bicubic

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /MonoImageResolution 1200

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /NeverEmbed [

    true

  ]

  /OPM 1

  /Optimize true

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /BleedOffset [

        0

        0

        0

        0

      ]

      /ConvertColors /NoConversion

      /DestinationProfileName (Coated FOGRA39 \050ISO 12647-2:2004\051)

      /DestinationProfileSelector /UseName

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure true

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles true

      /MarksOffset 6

      /MarksWeight 0.25000

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /UseName

      /PageMarksFile /RomanDefault

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /LeaveUntagged

      /UseDocumentBleed false

    >>

    <<

      /AllowImageBreaks true

      /AllowTableBreaks true

      /ExpandPage false

      /HonorBaseURL true

      /HonorRolloverEffect false

      /IgnoreHTMLPageBreaks false

      /IncludeHeaderFooter false

      /MarginOffset [

        0

        0

        0

        0

      ]

      /MetadataAuthor ()

      /MetadataKeywords ()

      /MetadataSubject ()

      /MetadataTitle ()

      /MetricPageSize [

        0

        0

      ]

      /MetricUnit /inch

      /MobileCompatible 0

      /Namespace [

        (Adobe)

        (GoLive)

        (8.0)

      ]

      /OpenZoomToHTMLFontSize false

      /PageOrientation /Portrait

      /RemoveBackground false

      /ShrinkContent true

      /TreatColorsAs /MainMonitorColors

      /UseEmbeddedProfiles false

      /UseHTMLTitleAsMetadata true

    >>

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXBleedBoxToTrimBoxOffset [

    0

    0

    0

    0

  ]

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXOutputCondition ()

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputIntentProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)

  /PDFXRegistryName ()

  /PDFXSetBleedBoxToMediaBox true

  /PDFXTrapped /False

  /PDFXTrimBoxToMediaBoxOffset [

    0

    0

    0

    0

  ]

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /ParseICCProfilesInComments true

  /PassThroughJPEGImages true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness false

  /PreserveHalftoneInfo false

  /PreserveOPIComments false

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts false

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /sRGBProfile (sRGB IEC61966-2.1)

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [612.000 792.000]

>> setpagedevice





