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Abstract. In this paper, we propose a method for solving the System of Fuzzy Relation Equa-

tions (SFRE) with extended max-min composition for inverse inference problems. The prop-

erties of interval and constrained solutions with granular and relational structure of the solu-

tion set are investigated. The extended max-min SFRE can be represented in the form of the 

max-min subsystems aggregated using the min operator or dual min-max subsystems aggre-

gated using the max operator. When decomposing the SFRE, the set of solutions can be de-

composed into the lower and upper subsets bounded by the same aggregating solutions. Each 

lower (upper) subset is defined by the unique greatest (least) or aggregating solution and the 

set of minimal (maximal) solutions. Following (Bartl et al. 2012), to avoid excessive granu-

larity and ensure interpretability of the interval solutions when restoring causes through ob-

served effects, the constraints in the form of linguistic modifiers are imposed on the measures 

of causes significances. The interval solutions are modeled by the complete crisp solutions, 

that is, the maximum solutions for the vectors of binary weights of the linguistic modifiers. 

The search for approximate solutions of the SFRE amounts to solving the optimization prob-

lem using the genetic algorithm. Due to the properties of the solution set, the genetic search 

for the lower and upper subsets is parallelized for each aggregating solution. The developed 

method makes it possible to simplify the search for the solution set based on the constraints 

on accuracy (interpretability) of the applied problem.  

Key words: extended max-min fuzzy relation equations, solution set, minimal (maximal) so-

lutions, interval solutions, constrained linguistic solutions     

 

1. Introduction 

Fuzzy relations and compositional rule of inference are widely used in the problems of 

inverse inference when restoring causes from observed effects (Di Nola et al. 1989; Peeva and 

Kyosev 2004). Solving the System of Fuzzy Relation Equations (SFRE) with max-min com-

position consists in finding the unique greatest solution and a set of minimal solutions (Di No-

la et al. 1989; Peeva and Kyosev 2004). In (Markovskii 2005; Lin et al. 2011; Bartl and Be-
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lohlavek 2015), the connection between the problem of finding the set of minimal solutions 

and the covering problem, which is NP-hard, is proven. However, for applied problems, it is 

impractical to determine all minimal solutions (Bartl and Prochazka 2017). Moreover, for 

multivariable dependencies, cause-effect interconnections are modeled by the extended rule 

of inference (Yager and Filev 1994). In this case, one has to deal with the approximate solva-

bility of the SFRE (Rotshtein and Rakytyanska 2011, 2012). 

In (Rotshtein and Rakytyanska 2011, 2012), the genetic algorithm for solving the max-

min SFRE was proposed to overcome NP-complexity. The method (Rotshtein and Rakytyan-

ska 2011, 2012) is based on the approximate solvability of the SFRE with simplified and mul-

tilevel composition laws which describe cause-effect connections represented by fuzzy rela-

tions and rules. However, for a set of interval solutions, the problem of excessive granularity 

remains unresolved. This leads to unnecessary detail, which requires additional computational 

resources, but does not improve the interpretability of the obtained solutions. The paper 

(Peeva 2013) analyzes approaches to reducing the complexity of the problem of finding min-

imal solutions by decomposing the max-min SFRE and aggregating subsets of solutions; par-

titioning the search space and cutting off redundant search branches; studying the properties 

of solutions in the context of the applied problem. Therefore, it is important to develop the 

method (Rotshtein and Rakytyanska 2011, 2012) to simplify the search for the set of solutions 

necessary for solving the applied problems. 

 

2. Literature Review 

Despite the well-developed apparatus for solving the max-min SFRE, there are still 

problems of its application in practice due to the complexity of finding the set of minimal so-

lutions. Therefore, in recent years, research has focused on developing methods aimed at sim-

plifying the search for the solution set. In this case, the search algorithms are based on some 

new additional properties of the solution set. 

Analytical methods involve the transformation of the SFRE into a characteristic ma-

trix, where solutions are classified as attainable if they satisfy the equations of the system 

(Markovskii 2005; Lin et al. 2011). In (Markovskii 2005; Lin et al. 2011), it was shown that 

the minimal solutions of the SFRE correspond to the irredundant coverings of the characteris-

tic matrix. In (Peeva 2013; Shieh 2013), the solvability conditions are formulated and algo-

rithms for finding the minimal coverings of the matrix are developed. In (Peeva 2013), cutting 

off redundant branches of the search is carried out based on dominance relations that allow 

ordering the coefficients of the characteristic matrix which contribute to solvability of the sys-

tem. Reducing the complexity of the search is achieved by decomposing the SFRE into the 
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independent vector and matrix subsystems (Fan et al. 2020; Sun et al. 2020; Stankovic et al. 

2017). When aggregating the subsets of solutions, the aggregation operators admit weakening 

the solvability conditions of the decomposed SFRE (Medina 2017).  

The algorithms recommended in practice due to acceptable complexity are based on 

the assumption that for every solution there exists a minimum solution less than or equal to a 

given one (Yeh 2008; Shieh 2008). Following (Díaz-Moreno et al. 2017; Sun et al. 2016; Li 

and Wang 2021), other minimal solutions can be derived from their predecessors. Simplifying 

the search for a set of minimal solutions involves combining them to find the widest interval. 

This approach eliminates duplication of solutions when finding the complete solution set. A 

new way in solving the SFRE is the method (Turunen 2020), which establishes the conditions 

for the existence of the lower and upper bounds without finding the complete solution set. If 

general or global solutions do not exist, conditions for the existence of partial interval or point 

wise solutions are formulated, which does not require the analytical solvability of the SFRE. 

In the context of the practical applications, the relationships between the significance 

measures of the decisions can be investigated. The solutions that represent the most profitable 

coverings are classified as strong (Yang X 2020). For many practical applications, the priority 

level of solutions is important. It is shown in (Yang et al. 2017; Qiu et al. 2021; Yang et al. 

2018), that lexicographic order relations are satisfied for the set of minimal solutions. Reduc-

tion of the decision tree is associated with the ordering of the lexicographic solutions by mov-

ing from the set of solutions to the set of indices. Therefore, at the index level, there is a set of 

minimal lexicographic solutions. For solving the problems of minimization (maximization) of 

the objective function with a system of constraints in the form of the SFRE, the concepts of 

leximinimal (leximaximal) solutions are introduced, which are Pareto-optimal on the set of 

minimal solutions (Yang et al. 2018; Yang XP 2020; Guu and Wu 2019). 

In (Bartl et al. 2012; Bartl and Trnecka 2021), the method for solving the SFRE with 

constraints imposed on the significance measures in the form of linguistic modifiers is pro-

posed. If the measures of causes and effects significances as well as the fuzzy relations take 

values from a set, e.g., {0, 0.25, 0.5, 0.75, 1}, then the conditions of analytical solvability are 

generalized to the constrained solutions of the SFRE (Bartl et al. 2012). Such an approach 

implies the composition over modified fuzzy relations (Cao et al. 2018). It follows from ana-

lytical solvability, that the number of linguistic modifiers should be the same for all causes 

and effects (Sun and Qu 2021). When the constraints are empty, the linguistic solutions turn 

into the ordinary ones in the form of intervals (Bartl et al 2012). When finding all minimal 

solutions without taking into account the constrained scale, one needs to go through all com-

binations of the values of significance measures of the causes (Bartl and Trnecka 2021). On 
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the other hand, the linguistic scale of truth values is sufficient for many applied problems, 

where the significance measures of the causes are described using the linguistic modifiers, 

e.g., weak, moderate, strong increase (Novák 2015; Le and Tran 2018; Vidal et al. 2020). As 

a result, finding all minimal solutions under the imposed constraints allows skipping a con-

siderable amount of these combinations (Bartl and Trnecka 2021). 

Thus, methods aimed at simplifying the search for minimal solutions rely on analytical 

solvability (and, in the absence of exact solutions, on partial solvability) of the SFRE with 

max-min composition (Peeva 2013; Shieh 2013). However, this type of composition is a spe-

cial case and its use in practice is limited since multifactorial dependencies are modeled by 

the extended inference rule (Yager and Filev 1994). The methods of finding the widest inter-

vals (Yeh 2008; Shieh 2008; Díaz-Moreno et al. 2017; Sun et al. 2016; Li and Wang 2021; 

Turunen 2020) and ranking the solutions (Yang et al. 2017; Qiu et al. 2021; Yang et al. 2018) 

abandon the structure of the solution set in the form of a set of explanations which is classical 

for the problems of inverse inference. Such methods make it possible to obtain only the abso-

lute range of changes in factors or their relative significance, which leads to the loss of rela-

tionships between factors. To achieve the accuracy of the inverse inference, it is necessary to 

tune the fuzzy model to experimental data (Rotshtein and Rakytyanska 2011, 2012). Moreo-

ver, when building the constrained solutions (Bartl et al. 2012; Bartl and Trnecka 2021), the 

significance measures associated with linguistic modifiers are also subject to tuning. Howev-

er, since the method of constrained solutions (Bartl et al. 2012; Bartl and Trnecka 2021) relies 

on analytical solvability, the requirements imposed on the significance measures of causes, 

effects and fuzzy relations cannot be satisfied when tuning the model. In practice, solving the 

extended SFRE for multifactorial dependencies with tuning to experimental data remains an 

unresolved problem. Besides, preserving the properties of the solution set when reducing the 

search area remains the crucial issue that seriously limits the use of fuzzy relational calculus 

in solving inverse problems. 

 

3. Problem Statement 

To ensure practical application, the decisive aspects of the method for solving the 

SFRE are the extended type of composition; approximate solvability; complexity reduction 

while preserving the properties of the solution set; interpretable solutions; tuning solutions to 

experimental data. 

This work is the development of the method of inverse inference (Rakityanskaya and 

Rotshtein 2007; Rotshtein and Rakytyanska 2009), which consists in solving the max-min 

SFRE with simultaneous tuning the fuzzy model to experimental data. For the extended max-
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min composition (Yager and Filev 1994), the subsets of solutions which correspond to sub-

systems described by fuzzy relations and rules were investigated in (Rotshtein 

and Rakytyanska 2011, 2012, 2014). It was shown in (Rakytyanska 2018, 2023), that the ag-

gregation of the subsystems is carried out using the max-min or dual min-max composition. 

Therefore, solving the extended SFRE implies search for all minimal and maximal solutions 

(Peeva and Kyosev 2004). However, in the general case, the problem remains unresolved, 

since there is not a single, but a set of solutions for aggregating the subsystems, which, in 

turn, yield new minimal (maximal) solutions. 

The search for approximate solutions of the SFRE amounts to solving the optimization 

problem using the genetic algorithm (Rakityanskaya and Rotshtein 2007; Rotshtein and 

Rakytyanska 2009). The set of solutions is formed by repeated runs of the genetic algorithm 

until all solutions are found. As a result, finding all minimal (maximal) solutions leads to un-

justified computational costs because of excessive granularity of solutions since the mecha-

nisms for linguistic interpretation of the obtained intervals are absent. At the same time, in 

many real applications, the granularity of solutions is known in advance (Azarov et al 2021). 

In this work, the method of inverse inference based on interpretable solutions of the 

extended max-min SFRE is developed. The interval and linguistic solutions with granular and 

relational structure of the solution set are investigated. Following (Bartl et al. 2012; Bartl and 

Trnecka 2021), to avoid excessive granularity and ensure interpretability of the interval solu-

tions, the constraints in the form of linguistic modifiers are imposed on the measures of caus-

es significances. Given the ranges of variation of the input parameters for each linguistic 

modifier, the permissible values of significance measures are defined with the help of the 

membership functions. The interval solutions are modeled using crisp solutions for the 

weights of linguistic modifiers. To cover the set of intervals, the concept of a complete crisp 

solution is introduced as the maximum solution for the vector of binary weights in the linguis-

tic description of the interval solution (Rakytyanska 2023). Thus, the set of interval solutions 

is replaced by a reduced set of complete crisp solutions, that preserves the properties of the 

solution set in the form of a set of explanations (Rotshtein and Rakytyanska 2014; Rakytyan-

ska 2018). The accuracy of linguistic solutions is ensured by tuning the membership functions 

of causes and effects and fuzzy relations using experimental data (Rotshtein and Rakytyanska 

2011, 2012). 

Following (Rotshtein and Rakytyanska 2011, 2012), the genetic algorithm for solving 

the SFRE is developed based on the properties of a set of ordinary and constrained solutions.   

Since the distributive set theoretic law is satisfied for max and min operators, the ex-

tended max-min SFRE can be represented in the form of subsystems with max-min composi-
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tion, which are aggregated using the min operator, or subsystems with dual min-max composi-

tion, which are aggregated using the max operator. In the general case, the solution set is con-

structed for a set of aggregating solutions. When decomposing the subsystems with max-min 

and dual min-max composition, the set of solutions can be decomposed into the lower and up-

per subsets bounded by the same aggregating solutions. Each lower (upper) subset is defined 

by the unique greatest (least) or aggregating solution and a set of minimal (maximal) solu-

tions. It follows from the properties of the set of ordinary solutions that the set of constrained 

solutions is decomposed into the lower and upper subsets of complete crisp solutions bounded 

by the constrained aggregating solutions.  

The properties of the solution set allow us to parallelize the genetic search for the low-

er and upper subsets bounded by the same aggregating solutions. At first, the set of ordinary 

(constrained) aggregating solutions is found. Then, the pool of optimization problems is dis-

tributed for finding all lower and upper subsets simultaneously. The search for the minimal 

(maximal) solutions for each subset is carried out by repeated runs of the genetic algorithm 

(Rotshtein and Rakytyanska 2011, 2012). Following (Bartl et al. 2012; Bartl and Trnecka 

2021), the computation time is shortened due to reduction of the number of constrained ag-

gregating solutions and minimal (maximal) solutions. Thus, the developed method makes it 

possible to simplify the search for the solution set of the extended max-min SFRE based on 

the constraints on accuracy (interpretability) of the applied problem. 

The aim of the work is to develop the method of inverse inference based on interpret-

able constrained solutions of the extended max-min SFRE. The imposed constraints should 

simplify the process of numerically finding the complete solution set. To achieve this aim, the 

following objectives were accomplished: to investigate the properties of the set of interval 

(constrained) solutions; to develop the genetic algorithm for solving the SFRE. 

 

4 Method of inverse inference based on solving the extended max-min SFRE  

4.1 Extended max-min SFRE  

The object with inputs 𝑥𝑖 ∈ [𝑥𝑖 , 𝑥𝑖], 𝑖 = 1, … , 𝑛, and outputs 𝑦𝑗 ∈ [𝑦𝑗 , 𝑦𝑗
], 𝑗 = 1, … , 𝑚, 

is considered. Fuzzy terms 𝑒𝑗𝑝, 𝑝 = 1, … , 𝑞𝑗, for estimating the variables 𝑦𝑗, 𝑗 = 1, … , 𝑚, are 

associated with the observed effects. Fuzzy terms 𝑐𝑖𝑙, 𝑙 = 1, … , 𝑘𝑖, for estimating the variables 

𝑥𝑖, 𝑖 = 1, … , 𝑛, correspond to the causes of the observed effects. The problem of inverse in-

ference is to restore the causes (inputs) through the observed effects (outputs).  

The cause-effect dependency can be described with the help of the extended max-min 

rule of inference (Yager and Filev 1994):  
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𝝁𝐹𝑗 = 𝝁𝐴1 ∘ 𝑹1𝑗 ∩...∩ 𝝁𝐴𝑛 ∘ 𝑹𝑛𝑗, 𝑗 = 1 … , 𝑚,                                 (1) 

 

where 𝝁𝐴𝑖 = (𝜇𝑐𝑖1 , . . . , 𝜇𝑐𝑖𝑘𝑖) is the vector of causes 𝑐𝑖𝑙, 𝑖 = 1, … , 𝑛, 𝑙 = 1, … , 𝑘𝑖, significance 

measures; 

𝝁𝐹𝑗 = (𝜇𝑒𝑗1 , . . . , 𝜇
𝑒𝑗𝑞𝑗) is the vector of effects 𝑒𝑗𝑝, 𝑗 = 1, … , 𝑚, 𝑝 = 1, … , 𝑞𝑗, signifi-

cance measures; 

𝑹𝑖𝑗 ⊆ 𝑐𝑖𝑙 × 𝑒𝑗𝑝=[𝑟𝑖𝑙,𝑗𝑝] is the fuzzy relation matrix; 

(∘, ∩) is the operation of extended max-min composition (Yager and Filev 1994). 

We define the membership functions 𝜇𝑐𝑖𝑙(𝑥𝑖) and 𝜇𝑒𝑗𝑝(𝑦𝑗) to find the measures of 

causes and effects significances for the given values of the input and output variables.    

Let us redenote: 

𝝁𝐶=(𝜇𝐶1 , . . . , 𝜇𝐶𝑁) = (𝝁𝐴1 ,…, 𝝁𝐴𝑛) is the vector of causes 𝐶𝐼 significance measures, 

where 𝑁 = 𝑘1+. . . +𝑘𝑛; 

𝝁𝐸=(𝜇𝐸1 , . . . , 𝜇𝐸𝑀) = (𝝁𝐹1 ,…, 𝝁𝐹𝑚) is the vector of effects 𝐸𝐽 significance measures, 

where 𝑀 = 𝑞1+. . . +𝑞𝑚. 

The extended SFRE (1) can be represented in the form of subsystems with max-min 

composition, which are aggregated using the min operator (Yager and Filev 1994): 

 

𝜇
𝑖

𝐸𝐽 = ⋁ (𝜇𝑐𝑖𝑙 ∧ 𝑟𝑖𝑙,𝐽)
𝑘𝑖
𝑙=1 , 𝑖 = 1, … , 𝑛,                          (2) 

   𝜇𝐸𝐽 = ⋀ (𝜇
𝑖

𝐸𝐽)𝑛
𝑖=1 , 𝐽 = 1, … , 𝑀.                                         (3) 

 

Here 𝜇
𝑖

𝐸𝐽
 is the measure of the effect 𝐸𝐽 significance for the i-th subsystem. 

Since the distributive set theoretic law is satisfied for the max and min operators, the 

extended SFRE (1) can be rearranged in the form of subsystems with dual min-max composi-

tion, which are aggregated using the max operator (Rotshtein and Rakytyanska 2011, 2012): 

 

𝜇
𝐻𝐿 = ⋀ (𝜇𝑎𝐿

𝑖
)𝑛

𝑖=1 , 𝐿 = 1,…,𝑁∗,                           (4) 

   𝜇
𝐸𝐽 = ⋁ (𝜇𝐽

𝐻𝐿)𝑁∗

𝐿=1 = ⋁ (𝜇
𝐻𝐿 ∧ 𝑟𝐿𝐽

∗ )𝑁∗

𝐿=1 , 𝐽 = 1, … , 𝑀.                            (5) 

 

Here 𝑎𝐿
𝑖 ∈ {𝑐𝑖1, . . . , 𝑐𝑖𝑘𝑖

} is the fuzzy term for estimating the variable 𝑥𝑖 in the combi-

nation of causes 𝐻𝐿; 

𝑁∗ is the number of the combinations of causes; 
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𝜇𝐻𝐿  is the significance measure of the combination of causes 𝐻𝐿; 

𝑟𝐿𝐽
∗  is the combined relation 𝐻𝐿 × 𝐸𝐽; 

𝜇𝐽
𝐻𝐿 is the significance measure of the combination of causes 𝐻𝐿 for the effect 𝐸𝐽. 

 

4.2 Structure of the constrained linguistic solution    

We shall denote: 

{𝛼𝐼1, . . . , 𝛼𝐼𝑔𝐼
} is the set of linguistic modifiers for estimating the significance measure 

𝜇𝐶𝐼, 𝐼 = 1, … , 𝑁; 

 𝜇𝐾
𝐶𝐼 (𝜇

𝐾

𝐶𝐼) is the lower (upper) bound of the significance measure 𝜇𝐶𝐼 for the linguistic 

modifier 𝛼𝐼𝐾, 𝐼 = 1, … , 𝑁, 𝐾 = 1, … , 𝑔𝐼. 

It is supposed that for each linguistic solution 𝜇𝐶𝐼 = 𝛼𝐼𝐾, 𝐼 = 1, … , 𝑁, 𝐾 = 1, … , 𝑔𝐼, 

the range of variation of the input parameter 𝑥𝑖(𝛼𝐼𝐾) =[𝑥𝐼𝐾,  𝑥𝐼𝐾], 𝑥𝐼𝐾=𝑥𝐼,𝐾−1, is known. In 

this case, the bounds of intervals of the significance measures 𝜇𝐶𝐼(𝛼𝐼𝐾) = [𝜇𝐾
𝐶𝐼 ,  𝜇

𝐾

𝐶𝐼], 𝜇𝐾
𝐶𝐼 =

𝜇
𝐾−1

𝐶𝐼 , associated with the linguistic modifiers 𝛼𝐼𝐾, can be obtained with the help of the mem-

bership functions of the fuzzy terms 𝐶𝐼. 

Following (Bartl et al. 2012), the constraints on the values of the significance measures 

𝜇𝐶𝐼 are imposed as follows: 

 

𝜇𝐶𝐼 ∈ {𝜇
1

𝐶𝐼 , . . . ,  𝜇
𝐾

𝐶𝐼 , . . . ,1}, 𝐼 = 1, … , 𝑁, 𝐾 = 1, … , 𝑔𝐼.                             (6) 

  

Let 𝝁С = (𝜇С1 , . . . , 𝜇С𝑁), 𝜇𝐶𝐼 ∈ [𝜇𝐶𝐼 ,  𝜇
𝐶𝐼], be the interval solution of the SFRE (1), 

where 𝜇𝐶𝐼 (𝜇
𝐶𝐼) is the lower (upper) bound of the significance measure 𝜇𝐶𝐼. 

Given constraints (6), the structure of the linguistic solution is defined as follows 

(Rakytyanska 2023). We shall denote: 

𝑾𝐼 = (𝑤𝐼1, . . . , 𝑤𝐼𝑔𝐼
), 𝐼 = 1, … , 𝑁, is the vector of weights of linguistic modifiers, 

where 𝑤𝐼𝐾 = 1, if the upper bound 𝜇
𝐾

𝐶𝐼 is the solution of the SFRE (1); 𝑤𝐼𝐾 = 0 otherwise.  

Then, the interval solution can be replaced by the set of explanations: 

 

𝜇𝐶𝐼={𝛼𝐼1 (with weight 𝑤𝐼1) OR … OR 𝛼𝐼𝑔𝐼
 (with weight 𝑤𝐼𝑔𝐼

)}, 𝐼 = 1, … , 𝑁,      (7)  

 

where 𝑤𝐼𝐾 = 1(0) if the modifier 𝛼𝐼𝐾 is present (absent) in the linguistic description of the 

interval solution 𝜇𝐶𝐼 ∈ [𝜇𝐶𝐼 , 𝜇
𝐶𝐼]. 
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The following max-min SFRE, which is derived from the relation (7), connects the 

significance measures for the interval and constrained solutions (Rakytyanska 2023): 

 

𝜇𝐶𝐼 = ⋁ (𝜇
𝐾

𝐶𝐼 ∧ 𝑤𝐼𝐾),
𝑔𝐼
𝐾=1  𝐼 = 1, … , 𝑁.                                    (8) 

 

Following (Di Nola et al. 1989; Peeva and Kyosev 2004), the unique maximal solution 

of the SFRE (8) completely covers the interval solution [𝜇
𝐶𝐼 ,  𝜇

𝐶𝐼], 𝐼 = 1, … , 𝑁, and the set of 

minimal solutions corresponds to subintervals of [𝜇𝐶𝐼 ,  𝜇
𝐶𝐼] to be merged as redundant. 

 The unique maximal solution 𝑾𝐼 = (𝑤𝐼1, . . . , 𝑤𝐼𝑔𝐼
), 𝐼 = 1, … , 𝑁, where 𝑤𝐼𝐾 are the 

upper bounds for the weights of linguistic modifiers 𝛼𝐼𝐾, is called a complete crisp solution 

(Rakytyanska 2023). 

 

4.3 Optimization problems for solving the extended max-min SFRE  

Following (Rotshtein and Rakytyanska 2011, 2012), the problem of solving the SFRE 

(1) is formulated as follows. The vector of causes significance measures 𝝁𝐶 = (𝜇𝐶1 , . . . , 𝜇𝐶𝑁), 

𝜇𝐶𝐼 ∈ [0,  1], 𝐼 = 1, … , 𝑁, should be found which provides the least distance between the ob-

served and model measures of effects significances: 

 

𝛥(𝝁𝐶) = ∑ [𝜇
𝐸𝐽(𝑦𝑗) − 𝜇

𝐸𝐽(𝜇𝐶1 , . . . , 𝜇𝐶𝑁)]
2

𝑀
𝐽=1 = min

𝝁𝐶
.                                 (9)  

 

Statement 1. The set 𝑆 of interval solutions of the SFRE (1) is defined by the set of ag-

gregating solutions �̂� = {�̂�𝑝
𝐶 ,  𝑝 = 1, … , �̂�}, where for each solution �̂�𝑝

𝐶 ∈ �̂� there exist the set 

of minimal solutions 𝐵𝑝 = {𝝁𝑝𝑙
𝐶 ,  𝑙 = 1, … , 𝑍𝑝} and the set of maximal solutions 𝐵𝑝 =

{𝝁𝑝ℎ

𝐶
,  ℎ = 1, … , 𝑍𝑝}: 

 

𝑆 = ⋃ �̂�𝑝
𝐶∈�̂� ⋃  ⋃

 𝝁𝑝ℎ
𝐶

∈𝐵𝑝𝝁𝑝𝑙
𝐶 ∈𝐵𝑝

 [[𝝁𝑝𝑙
𝐶 , �̂�𝑝

𝐶] ∪ [�̂�𝑝
𝐶 , 𝝁𝑝ℎ

𝐶
]].                        (10) 

 

Here   �̂�𝑝
𝐶 = (�̂�𝑝

𝐶1 , . . . , �̂�𝑝
𝐶𝑁) is the vector of aggregation of causes significance measures; 

𝝁𝑝𝑙
𝐶 = (𝜇𝑝𝑙

𝐶1 , . . . , 𝜇𝑝𝑙
𝐶𝑁) and 𝝁𝑝ℎ

𝐶
= (𝜇

𝑝ℎ

𝐶1 , . . . , 𝜇
𝑝ℎ

𝐶𝑁) are the vectors of lower and upper 

bounds of causes significance measures. 

        Proof. The formula (10) follows from the properties of the solution set of the max-min 

and dual min-max SFRE (Di Nola et al. 1989; Peeva and Kyosev 2004). 
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Since the SFRE (1) contains subsystems (2) with max-min composition and aggrega-

tion of the subsystems is carried out using the min operator, then the solution set 𝑆 has the low-

er subsets 𝑆𝑝, 𝑝 = 1, … , �̂�1, each of which is defined by the unique maximal solution 𝝁𝑝

1𝐶
 and 

the set of minimal solutions 𝐵𝑝 = {𝝁𝑝𝑙
𝐶 ,  𝑙 = 1, … , 𝑍𝑝}: 

 

𝑆𝑝 = ⋃𝝁𝑝𝑙
𝐶 ∈𝐵𝑝

 [𝝁𝑝𝑙
𝐶 , 𝝁𝑝

1𝐶
], 𝑝 = 1, … , �̂�1. 

 

Here 𝝁𝑝

1𝐶
= (𝜇

𝑝

1𝐶1 , . . . , 𝜇
𝑝

1𝐶𝑁) is the vector of upper bounds of causes significance measures for 

the lower subset 𝑆𝑝. 

On the other hand, since the SFRE (1) contains subsystems (4) with dual min-max 

composition and aggregation of the subsystems is carried out using the max operator, then the 

solution set 𝑆 has the upper subsets 𝑆𝑝, 𝑝 = 1, … , �̂�2, each of which is defined by the unique 

minimal solution 𝝁𝑝
2𝐶 and the set of maximal solutions 𝐵𝑝 = {𝝁𝑝ℎ

𝐶
,  ℎ = 1, … , 𝑍𝑝}: 

 

𝑆𝑝 = ⋃
𝝁𝑝ℎ

𝐶
∈𝐵𝑝

 [𝝁𝑝
2𝐶 , 𝝁𝑝ℎ

𝐶
], 𝑝 = 1, … , �̂�2. 

 

Here 𝝁𝑝
2𝐶 = (𝜇𝑝

2𝐶1 , . . . , 𝜇𝑝
2𝐶𝑁) is the vector of lower bounds of causes significance measures 

for the upper subset 𝑆𝑝. 

If 𝝁𝐶 ∈ 𝑆𝑝, where 𝜇
𝐶𝐼 ≤ 𝜇

𝑝

1𝐶𝐼, then 𝜇
𝑖

𝐸𝐽(𝝁𝐶 ) = 𝜇
𝑖

𝐸𝐽(𝝁𝑝

1С
), 𝑖 = 1, … , 𝑛, and if 𝝁𝐶 ∈ 𝑆𝑝, 

where 𝜇
𝐶𝐼 ≥ 𝜇𝑝

2𝐶𝐼, then 𝜇𝐽
𝐻𝐿(𝝁𝐶 ) = 𝜇𝐽

𝐻𝐿(𝝁𝑝
2𝐶), 𝐿 = 1, … , 𝑁∗.  

It follows from the equality of the right-hand sides of the equations (3) and (5) that the 

set of upper solutions  �̂�1 = {𝝁𝑝

1𝐶
,  𝑝 = 1, … , �̂�1} of the lower subsets 𝑆𝑝, and the set of lower 

solutions �̂�2 = {𝝁𝑝
2𝐶 ,  𝑝 = 1, … , �̂�2} of the upper subsets 𝑆𝑝 are equal, that is �̂�1 = �̂�2 = �̂� 

and 𝝁𝑝

1𝐶
= 𝝁𝑝

2𝐶 = �̂�𝑝
𝐶, 𝑝 = 1, … , �̂�. Thus, the set �̂�1 = �̂�2 = �̂� = {�̂�𝑝

𝐶 ,  𝑝 = 1, … , �̂�} is the set 

of aggregating solutions.   

Then, by performing the union ⋃ (𝑆𝑝 ∪ 𝑆𝑝) �̂�𝑝
𝐶∈�̂� , we obtain the formula (10).  

We shall redenote the vector of weights of linguistic modifiers as 𝑽 =

(𝑾1, . . . , 𝑾𝑁) = (𝑣1, . . . , 𝑣𝑇), where 𝑇 = 𝑔1+. . . +𝑔𝑁. 
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Given constraints (6), the problem of solving the SFRE (1), (8) is formulated as fol-

lows (Rakytyanska 2023). The vector of weights of linguistic modifiers 𝑽 = (𝑾1, . . . , 𝑾𝑁) =

(𝑣1, . . . , 𝑣𝑇), 𝑣𝑃 ∈ {0,  1}, should be found which provides the least distance between the ob-

served and model measures of effects significances: 

 

𝛥(𝑽) = ∑ [𝜇
𝐸𝐽(𝑦𝑗) − 𝜇

𝐸𝐽(𝑾1, . . . , 𝑾𝑁)]
2

𝑀
𝐽=1 = min

𝑽
.                                  (11)  

 

Let us introduce the following concepts: 

�̂� = (�̂�1, . . . , �̂�𝑁) = (�̂�1, . . . , 𝑣𝑇) is the constrained aggregating solution which is de-

fined by the set of aggregating indices {�̂�1, . . . , �̂�𝑁}, where �̂�𝐼𝐾 = 1, if 𝐾 = �̂�𝐼; 

�⃖�  = (�⃖�    1, . . . , �⃖�    𝑁) = (�⃖�1, . . . , �⃖�𝑇) is the upper bounded complete crisp solution, where 

for all �⃖�  𝐼𝐾 = 1, 𝐾 ≤ �̂�𝐼; 

𝑽   = (𝑾     1, . . . , 𝑾     𝑁) = (𝑣 1, . . . , 𝑣 𝑇) is the lower bounded complete crisp solution, where 

for all 𝑤   𝐼𝐾 = 1, 𝐾 ≥ �̂�𝐼. 

Statement 2. The set 𝑆𝑐 of constrained solutions of the SFRE (1), (8) is defined by the  

set of constrained aggregating solutions �̂� = {�̂�𝑝,  𝑝 = 1, … , �̂�}, where for each solution 

�̂�𝑝 ∈ �̂� there exist the lower and upper subsets of complete crisp solutions 𝐷𝑝 = {�⃖�  𝑝𝑙,  𝑙 =

1, … , 𝑄𝑝} and 𝐷𝑝 = {𝑽   𝑝ℎ,  ℎ = 1, … , 𝑄𝑝} with the set of aggregating indices {�̂�1
𝑝, . . . , �̂�𝑁

𝑝}: 

 

𝑆𝑐 = ⋃  
�̂�𝑝∈�̂�

⋃   ⋃ 𝑽   𝑝ℎ∈𝐷𝑝�⃖�  𝑝𝑙∈𝐷𝑝
 (�⃖�  𝑝𝑙 ∪ 𝑽   𝑝ℎ).                              (12) 

 

Here �̂�𝑝 = (�̂�1
𝑝, . . . , �̂�𝑁

𝑝 ) = (𝑣1
𝑝, . . . , 𝑣𝑇

𝑝) is the constrained aggregating solution for the lower 

and upper subsets 𝐷𝑝 and 𝐷𝑝, where �̂�𝐼𝐾
𝑝 = 1, if 𝐾 = �̂�𝐼

𝑝
; 

�⃖�  𝑝𝑙 = (�⃖�    1
𝑝𝑙, . . . , �⃖�    𝑁

𝑝𝑙) = (�⃖�1
𝑝𝑙, . . . , �⃖�𝑇

𝑝𝑙) is the upper bounded complete crisp solution 

for the lower subset 𝐷𝑝, where for all �⃖�  𝐼𝐾
𝑝𝑙 = 1, 𝐾 ≤ �̂�𝐼

𝑝
; 

 𝑽   𝑝ℎ = (𝑾     1
𝑝ℎ, . . . , 𝑾     𝑁

𝑝ℎ) = (𝑣 1
𝑝ℎ, . . . , 𝑣 𝑇

𝑝ℎ) is the lower bounded complete crisp solution 

for the upper subset 𝐷𝑝, where for all 𝑤   𝐼𝐾
𝑝ℎ = 1, 𝐾 ≥ �̂�𝐼

𝑝
. 

 Proof. The formula (12) follows from the properties (10) of the solution set of the ex-

tended max-min SFRE. 
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4.4 Genetic algorithm for solving the extended max-min SFRE 

Due to the properties of the solution set of the extended max-min SFRE, finding the 

set of interval solutions is reduced to parallel genetic search for the lower and upper subsets 

𝑆𝑝 and 𝑆𝑝 bounded by the same aggregating solutions �̂�𝑝
𝐶 ∈ �̂�, 𝑝 = 1, … , �̂�. In the case of 

constrained solutions, the parallel genetic search is performed to find the lower and upper 

subsets 𝐷𝑝 and 𝐷𝑝 separated by the aggregating solutions �̂�𝑝 ∈ �̂�, 𝑝 = 1, … , �̂�.  

The genetic algorithm is performed in two stages: search for the set of aggregating so-

lutions �̂� = {�̂�𝑝
𝐶 ,  𝑝 = 1, … , �̂�}; parallel search for the sets 𝐵𝑝 (𝐵𝑝) of lower (upper) bounds 

for each aggregating solution �̂�𝑝
𝐶 ∈ �̂�. In the case of constrained solutions, formation of the 

set of aggregating solutions �̂� = {�̂�𝑝,  𝑝 = 1, … , �̂�} precedes the parallel search for the lower 

(upper) subsets of complete crisp solutions 𝐷𝑝 (𝐷𝑝). 

When searching for the aggregating solutions, the chromosome encodes the solutions 

𝝁𝐶 = (𝜇
𝐶1 , . . . , 𝜇

𝐶𝑁) or 𝑽 = (𝑾1, . . . , 𝑾𝑁). The cross-over operation consists in exchanging 

parts of the chromosomes inside each solution 𝜇
𝐶𝐼 or 𝑾𝐼, 𝐼 = 1, … , 𝑁. The fitness function is 

based on the criterion (9) or (11).  

The aggregating solution is formed by a stepwise increment (decrement) until the up-

per solution of the lower subset and the lower solution of the upper subset coincide. The set of 

aggregating solutions is formed by repeated runs of the genetic algorithm if new aggregating 

solutions are found. Given constraints, the weights are activated by a stepwise increment 

(decrement) until the set of upper aggregating indices for the lower subset and the set of lower 

aggregating indices for the upper subset coincide. To form the set of constrained aggregating 

solutions, the genetic algorithm is repeatedly run if new sets of aggregating indices are found.  

The criterion for stopping the genetic algorithm is the absence of new aggregating so-

lutions or new sets of aggregating indices within a given number of iterations. 

Let 𝝁𝐶 (𝑡) = (𝜇
𝐶1(𝑡), . . . , 𝜇

𝐶𝑁(𝑡)) be some t-th solution of the optimization problem 

(9); 

𝑽(𝑡) = (𝑾1(𝑡), . . . , 𝑾𝑁(𝑡)) be some t-th solution of the optimization problem (11) 

with some set of aggregating indices {𝑋1(𝑡), . . . , 𝑋𝑁(𝑡)}. 

 

Algorithm 1: Formation of the set of aggregating solutions  

1: while [new aggregating solutions are found] do 

2:     Search for the null solution 𝝁0
𝐶 = (𝜇0

𝐶1 , . . . , 𝜇0
𝐶𝑁) of the optimization problem (9) 

3: // Define the search space for the aggregating solution �̂�𝑝
𝐶 
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4: if 𝜇0
𝐶𝐼 ∈ 𝑆𝑝, then �̂�𝑝

𝐶𝐼 ∈ [𝜇0
𝐶𝐼 ,  1]; if 𝜇0

𝐶𝐼 ∈ 𝑆𝑝, then �̂�𝑝
𝐶𝐼 ∈ [0, 𝜇0

𝐶𝐼] 

5: Exclude previous solutions �̂�𝑘
𝐶, 𝑘 < 𝑝,  from the search space 

6:    while [new bounds of the interval are found] do // Stepwise increment (decrement)  

7:  Go to 𝝁𝐶 (𝑡) = (𝜇
𝐶1(𝑡), . . . , 𝜇

𝐶𝑁(𝑡)), where 𝛥(𝝁𝐶 (𝑡)) = 𝛥(𝝁0
𝐶) 

8:  if 𝜇
𝐶𝐼(𝑡) ≥ 𝜇

𝐶𝐼(𝑡 − 1) and 𝜇
𝑖

𝐸𝐽(𝜇
𝐶𝐼(𝑡)) = 𝜇

𝑖

𝐸𝐽(𝜇
𝐶𝐼(𝑡 − 1)), then 𝜇

𝐶𝐼(𝑡) ∈ 𝑆𝑝 

9:  if 𝜇
𝐶𝐼(𝑡) ≤ 𝜇

𝐶𝐼(𝑡 − 1) and 𝜇𝐽
𝐻𝐿(𝜇

𝐶𝐼(𝑡)) = 𝜇𝐽
𝐻𝐿(𝜇

𝐶𝐼(𝑡 − 1)), then 𝜇
𝐶𝐼(𝑡) ∈ 𝑆𝑝 

10:  // Define the aggregating solution 

11:  if 𝝁𝐶 (𝑡) ≠ 𝝁𝐶 (𝑡 − 1), then �̂�𝑝
𝐶𝐼=𝜇

𝐶𝐼(𝑡)  

12:  if 𝝁𝐶 (𝑡) = 𝝁𝐶 (𝑡 − 1), then the search is stopped 

13:  end while [new bounds of the interval are found] 

14: end while [new aggregating solutions are found] 

 

Algorithm 2: Formation of the set of constrained aggregating solutions  

1: while [new sets of aggregating indices are found] do 

2: Search for the null solution 𝑽0 = (𝑾1
0, . . . , 𝑾𝑁

0 ) of the optimization problem (11)  

3:  Define the null set of aggregating indices {𝑋1
0, . . . , 𝑋𝑁

0} 

4: // Define the search space for the aggregating indices �̂�𝐼
𝑝 of the solutions �̂�𝑝 

5: if 𝑾𝐼
0 ∈ 𝐷𝑝, then �̂�𝐼

𝑝 ∈ {𝑋
𝐼
0, 𝑔𝐼}; if 𝑾𝐼

0 ∈ 𝐷𝑝, then �̂�𝐼
𝑝 ∈ {1, 𝑋𝐼

0} 

6: Exclude previous solutions �̂�𝑘,  𝑘 < 𝑝, from the search space 

7:    while [new aggregating bounds are found] do // Stepwise increment (decrement)  

8:  Go to 𝑽(𝑡) = (𝑾1(𝑡), . . . , 𝑾𝑁(𝑡)), where 𝛥(𝑽(𝑡)) = 𝛥(𝑽0)  

9:  if 𝑋𝐼(𝑡) ≥ 𝑋𝐼(𝑡 − 1) and 𝜇
𝑖

𝐸𝐽(𝑾𝐼(𝑡)) = 𝜇
𝑖

𝐸𝐽(𝑾𝐼(𝑡 − 1)), then 𝑾𝐼(𝑡) ∈ 𝐷𝑝 

10:  if 𝑋𝐼(𝑡) ≤ 𝑋𝐼(𝑡 − 1) and 𝜇𝐽
𝐻𝐿(𝑾𝐼(𝑡)) = 𝜇𝐽

𝐻𝐿(𝑾𝐼(𝑡 − 1)), then 𝑾𝐼(𝑡) ∈ 𝐷𝑝 

11:   // Define the constrained aggregating solution 

12:  if 𝑽(𝑡) ≠ 𝑽(𝑡 − 1), that is 𝑋𝐼(𝑡) ≠ 𝑋𝐼(𝑡 − 1), then �̂�𝑝=𝑽(𝑡) and �̂�𝐼
𝑝 = 𝑋𝐼(𝑡)   

13:  if 𝑽(𝑡) = 𝑽(𝑡 − 1), that is 𝑋𝐼(𝑡) = 𝑋𝐼(𝑡 − 1), then the search is stopped  

14:  end while [new aggregating bounds are found] 

15: end while [new sets of aggregating indices are found] 

 

When searching for the lower and upper bounds, the chromosome is distributed to so-

lutions 𝝁1𝐶 = (𝜇
1𝐶1 , . . . , 𝜇

1𝐶𝑁) and 𝝁2𝐶 = (𝜇
2𝐶1 , . . . , 𝜇

2𝐶𝑁) for the lower and upper subsets 𝑆𝑝 
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and 𝑆𝑝. In the case of constrained solutions, the chromosome is distributed to solutions 𝑽1 =

(𝑾1
1, . . . , 𝑾𝑁

1 ) and 𝑽2 = (𝑾1
2, . . . , 𝑾𝑁

2 ) for the lower and upper subsets 𝐷𝑝 and 𝐷𝑝.  

Formation of the lower and upper subsets is accomplished by way of solving a pool of 

the optimization problems (9) or (11). The interval solution is formed by a stepwise increment 

(decrement) until the widest interval is obtained. The set of intervals is formed by repeated 

runs of the genetic algorithm if new minimum (maximum) solutions are found. To cover the 

interval in the case of constraints, the stepwise increment (decrement) is performed until the 

maximum number of weights is activated. To cover the set of intervals, the genetic algorithm 

is repeatedly run if new complete crisp solutions are found.  

The criterion for stopping the genetic algorithm is the absence of new lower (upper) 

bounds or new complete crisp solutions within a given number of iterations. 

Let 𝝁1𝐶(𝑡) = (𝜇
1𝐶1(𝑡), . . . , 𝜇

1𝐶𝑁(𝑡)) and 𝝁2𝐶(𝑡) = (𝜇
2𝐶1(𝑡), . . . , 𝜇

2𝐶𝑁(𝑡)) be some t-th 

solutions of the optimization problem (9) for the lower and upper subsets; 

𝑽1 (𝑡) = (𝑾1
1(𝑡), . . . , 𝑾𝑁

1 (𝑡)) and 𝑽2 (𝑡) = (𝑾1
2(𝑡), . . . , 𝑾𝑁

2 (𝑡)) be some t-th solu-

tions of the optimization problem (11) for the lower and upper subsets. 

 

Algorithm 3: Formation of the set of lower and upper bounds  

1: while [new lower and upper solutions are found] do 

2:     Search for the null solutions of the optimization problem (9) 

3: 𝝁0
1𝐶 = (𝜇0

1𝐶1 , . . . , 𝜇0
1𝐶𝑁), 𝜇0

1𝐶1 ≤ �̂�𝑝
𝐶𝐼, for the lower subset 𝑆𝑝 

4: 𝝁0
2𝐶 = (𝜇0

2𝐶1 , . . . , 𝜇0
2𝐶𝑁), 𝜇0

2𝐶𝐼 ≥ �̂�𝑝
𝐶𝐼, for the upper subset 𝑆𝑝 

5: // Define the search space for the lower (upper) bounds 𝝁𝑝𝑙
𝐶  (𝝁𝑝ℎ

𝐶
) 

6: 𝜇𝑝𝑙
𝐶𝐼 ∈ 1

0[0, ]IC
 ; 𝜇

𝑝ℎ

𝐶𝐼 ∈ [𝜇0
2𝐶𝐼 , 1]  

7: Exclude previous solutions 𝝁𝑝𝑘
𝐶 , 𝑘 < 𝑙, and 𝝁𝑝𝑘

𝐶
, 𝑘 < ℎ, from the search space  

8:    while [new bounds of the interval are found] do // Stepwise increment (decrement)  

9:   Go to 𝝁1𝐶(𝑡) = (𝜇
1𝐶1(𝑡), . . . , 𝜇

1𝐶𝑁(𝑡)), 𝜇
1𝐶𝐼(𝑡) ≤ 𝜇

1𝐶𝐼(𝑡 − 1)  

10:  if 𝛥 (𝝁1𝐶(𝑡)) = 𝛥(𝝁0
1𝐶), then 𝝁1𝐶 ∈ 𝑆𝑝 

11:  Go to 𝝁2𝐶(𝑡) = (𝜇
2𝐶1(𝑡), . . . , 𝜇

2𝐶𝑁(𝑡)), 𝜇
2𝐶𝐼(𝑡) ≥ 𝜇

2𝐶𝐼(𝑡 − 1)  

12:  if 𝛥 (𝝁2𝐶(𝑡)) = 𝛥(𝝁0
2𝐶), then 𝝁2𝐶 ∈ 𝑆𝑝 

13:  // Define the lower (upper) bounds 

14:  if 𝝁1𝐶(𝑡) ≠ 𝝁1𝐶(𝑡 − 1), then 𝜇𝑝𝑙
𝐶𝐼=𝜇

1𝐶𝐼(𝑡) for the lower subset 𝑆𝑝 

15:  if 𝝁2𝐶(𝑡) ≠ 𝝁2𝐶(𝑡 − 1), then 𝜇
𝑝ℎ

𝐶𝐼 =𝜇
2𝐶𝐼(𝑡) for the upper subset 𝑆𝑝 

14            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

16:  if 𝝁1𝐶(𝑡) = 𝝁1𝐶(𝑡 − 1) and 𝝁2𝐶(𝑡) = 𝝁2𝐶(𝑡 − 1), then the search is stopped  

17:  end while [new bounds of the interval are found] 

18: end while [new lower and upper solutions are found] 

 

Algorithm 4: Formation of the lower and upper subsets of complete crisp solutions  

1: while [new complete crisp solutions are found] do 

2:     Search for the null solutions of the optimization problem (11) 

3: 𝑽0
1 = (𝑾1

1,0, . . . , 𝑾𝑁
1,0) for the lower subset 𝐷𝑝, where for all 𝑤𝐼𝐾

1,0 = 1, 𝐾 ≤ �̂�𝐼
𝑝
 

4: 𝑽0
2 = (𝑾1

2,0, . . . , 𝑾𝑁
2,0) for the upper subset 𝐷𝑝, where for all 𝑤𝐼𝐾

2,0 = 1, 𝐾 ≥ �̂�𝐼
𝑝
  

5: // Define the search space for the complete crisp solutions �⃖�  𝑝𝑙 and 𝑽   𝑝ℎ 

6: �⃖�  𝐼𝐾
𝑝𝑙 ∈ {𝑤𝐼𝐾

1,0,  1}, 𝑤   𝐼𝐾
𝑝ℎ ∈ {𝑤𝐼𝐾

2,0,  1}   

7: Exclude previous solutions �⃖�  𝑝𝑠, 𝑠 < 𝑙, and 𝑽   𝑝𝑠, 𝑠 < ℎ, from the search space 

8:    while [new weights are activated to cover the interval] do // Stepwise increment   

9:  Go to 𝑽1 (𝑡) = (𝑾1
1(𝑡), . . . , 𝑾𝑁

1 (𝑡)), 𝑤𝐼𝐾
1 (𝑡) ≥ 𝑤𝐼𝐾

1 (𝑡 − 1), 𝐾 ≤ �̂�𝐼
𝑝
 

10:  Go to 𝑽2 (𝑡) = (𝑾1
2(𝑡), . . . , 𝑾𝑁

2 (𝑡)), 𝑤𝐼𝐾
2 (𝑡) ≥ 𝑤𝐼𝐾

2 (𝑡 − 1), 𝐾 ≥ �̂�𝐼
𝑝
 

11:  if 𝛥(𝑽1 (𝑡)) = 𝛥(𝑽0
1), then 𝑽1 ∈ 𝐷𝑝 

12:   if 𝛥(𝑽2 (𝑡)) = 𝛥(𝑽0
2), then 𝑽2 ∈ 𝐷𝑝 

13:  // Define the lower (upper) bounded complete crisp solution 

14:  if 𝑽1 (𝑡) ≠ 𝑽1 (𝑡 − 1), then �⃖�  𝐼𝐾
𝑝𝑙 = 𝑤𝐼𝐾

1 (𝑡) for the lower subset 𝐷𝑝 

15:  if 𝑽2 (𝑡) ≠ 𝑽2 (𝑡 − 1), then 𝑤   𝐼𝐾
𝑝ℎ

= 𝑤𝐼𝐾
2 (𝑡) for the upper subset 𝐷𝑝 

16:  if 𝑽1 (𝑡) = 𝑽1 (𝑡 − 1) and 𝑽2 (𝑡) = 𝑽2 (𝑡 − 1), then the search is stopped 

17:  end while [new weights are activated to cover the interval] 

18: end while [new complete crisp solutions are found] 

 

5 Example: Piston Pump Diagnostics  

The aim of this section is to check the correctness of the inverse inference for a set of 

experimental data. Let us consider the diagnostics of faults causes of the piston pump, the 

functioning of which is determined by the cycles of discharge and suction. 

Input parameters are: 𝑥1 (𝑥4) – hydraulic resistance of the discharging (suction) main, 

𝑥1 = [1.4, 3.2] (𝑥4 =[1.7, 3.8]) kg/cm2; 𝑥2 (𝑥5) – discharge (suction) valve clearance,  

𝑥2 =±[0.1, 0.3] (𝑥5 =±[0.1, 0.5]) mm; 𝑥3 (𝑥6) – leakage of the discharging (suction) main,  

𝑥3 =[0.5, 2.1] (𝑥6 =[1.0, 3.2]) cm2/min. The faults causes to be identified: 𝑐11 (с41) – increase 

of resistance 𝑥1 (𝑥4);  𝑐21 (𝑐51) – decrease of the clearance 𝑥2 (𝑥5); 𝑐22 (𝑐52) – increase of the 
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clearance 𝑥2 (𝑥5); 𝑐31 (𝑐61) – increase of leakage 𝑥3 (𝑥6). Output parameters are: 𝑦1 – produc-

tivity, 𝑦1 = [15, 30] m3/h; 𝑦2 – force main pressure, 𝑦2 = [10, 20] kg/cm2; 𝑦3 – consumed 

power, 𝑦3 = [15, 24] kw. The observed effects are: 𝑒11 – productivity 𝑦1 fall; 𝑒21 (𝑒22) – force 

main pressure 𝑦2 drop (rise); 𝑒31 (𝑒32) – consumed power 𝑦3 drop (rise).   

For the fuzzy causes and effects, we use the bell-shaped membership function of the 

variable u to the term T (Rakityanskaya and Rotshtein 2007): 

 

𝜇𝑇(𝑢) =
1

1 + (
𝑢 − 𝛽

𝜎 )
2, 

 

where 𝛽 is the coordinate of the function maximum; 𝜎
 
is the concentration parameter. 

To tune the fuzzy model, we used the measurements results for 290 pumps with dif-

ferent measures of faults significances. Following (Rakityanskaya and Rotshtein 2007, Rot-

shtein and Rakytyanska 2009), the essence of tuning consists in finding the parameters of 

causes and effects membership functions and the fuzzy relations, which minimize the root 

mean-squared error:  

 

𝑅𝑀𝑆𝐸 = √ 1

290
∑ ∑ [𝜇

𝐸𝐽(𝑦𝑗
𝑘) − 𝜇

𝐸𝐽(𝜇𝐶1(𝑥1
𝑘), . . . , 𝜇𝐶𝑁(𝑥𝑛

𝑘))]
2

𝑀
𝐽=1

290
𝑘=1 , 

 

where 𝑥𝑖
𝑘 , 𝑦𝑗

𝑘 are the values of the input and output parameters in the k-th experiment.  

As a result of tuning, the RMSE takes the value of 0.0118. 

Parameters of membership functions for the fuzzy causes and effects are given in Ta-

ble 1. Membership functions are presented in Figure 1.  

 

Table 1 – Membership functions parameters for the fuzzy causes and effects  

Parameter 

Fuzzy causes  Fuzzy effects 

𝑐11 

(с41) 

𝑐21 

(𝑐51) 

𝑐22 

(𝑐52) 

𝑐31 

(𝑐61) 

𝑒11 𝑒21 𝑒22 𝑒31 𝑒32 

𝛽  3.24 

(3.87) 

-0.29 

(-0.49) 

0.29 

(0.47) 

2.12 

(3.11) 

15.35 10.18 19.45 15.69 23.81 

𝜎  0.92 

(0.91) 

0.09 

(0.14) 

0.07 

(0.16) 

0.74 

(0.85) 

5.14 3.85 3.16 3.10 3.68 
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a) 

 

b) 

Figure 1 – Membership functions of the fuzzy causes (a) and effects (b) after tuning 

 

 

For aggregating the subsystems of discharging and suction, the cause-effect intercon-

nections were modeled using the extended max-min inference rule (Yager and Filev 1994).  

Let us redenote:  

(𝜇𝐶1 , . . . , 𝜇𝐶4) = (𝜇𝑐11 , 𝜇𝑐21 , 𝜇𝑐22 , 𝜇𝑐31) and (𝜇𝐶5 , . . . , 𝜇𝐶8) = (𝜇𝑐41 , 𝜇𝑐51 , 𝜇𝑐52 , 𝜇𝑐61) 

are the fuzzy causes vectors for the subsystems of discharging and suction;  

(𝜇𝐸1 , . . . , 𝜇𝐸5) = (𝜇𝑒11 , 𝜇𝑒21 , 𝜇𝑒22 , 𝜇𝑒31 , 𝜇𝑒32)
 
is the fuzzy effects vector. 

The extended max-min SFRE can be represented in the form of the max-min subsys-

tems, which are aggregated using the min operator:  

 

𝜇𝐸1 = [(𝜇𝐶3 ∧ 0.92) ∨ (𝜇𝐶4 ∧ 0.79)] ∧ 

∧ [(𝜇𝐶5 ∧ 0.32) ∨ (𝜇𝐶6 ∧ 0.86) ∨ (𝜇𝐶7 ∧ 0.29) ∨ (𝜇𝐶8 ∧ 0.55)], 

𝜇𝐸2 = [(𝜇𝐶1 ∧ 0.65) ∨ (𝜇𝐶2 ∧ 0.43) ∨ (𝜇𝐶3 ∧ 0.57)] ∧ 

∧ [(𝜇𝐶5 ∧ 0.53) ∨ (𝜇𝐶6 ∧ 0.74) ∨ (𝜇𝐶7 ∧ 0.39) ∨ (𝜇𝐶8 ∧ 0.46)], 

𝜇𝐸3 = [𝜇𝐶2 ∧ 0.89] ∧ [(𝜇𝐶7 ∧ 0.78) ∨ (𝜇𝐶8 ∧ 0.91)], 

𝜇𝐸4 = [(𝜇𝐶1 ∧ 0.82) ∨ (𝜇𝐶3 ∧ 0.71) ∨ (𝜇𝐶4 ∧ 0.35)] ∧ [(𝜇𝐶5 ∧ 0.76) ∨ (𝜇𝐶6 ∧ 0.41)], 

𝜇𝐸5 = [(𝜇𝐶1 ∧ 0.47) ∨ (𝜇𝐶2 ∧ 0.96)] ∧ [(𝜇𝐶5 ∧ 0.38) ∨ (𝜇𝐶7 ∧ 0.90)].           (13) 
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 Using the distributive set theoretic law, the extended max-min SFRE (13) can be rearranged 

in the form of the dual min-max subsystems, which are aggregated using the max operator: 

 

𝜇𝐸1 = (𝜇𝐻9 ∧ 0.32) ∨ (𝜇𝐻10 ∧ 0.86) ∨ (𝜇𝐻11 ∧ 0.29) ∨ (𝜇𝐻12 ∧ 0.55) ∨ 

∨ (𝜇𝐻13 ∧ 0.32) ∨ (𝜇𝐻14 ∧ 0.79) ∨ (𝜇𝐻15 ∧ 0.29) ∨ (𝜇𝐻16 ∧ 0.55), 

𝜇𝐸2 = (𝜇𝐻1 ∧ 0.53) ∨ (𝜇𝐻2 ∧ 0.65) ∨ (𝜇𝐻3 ∧ 0.39) ∨ (𝜇𝐻4 ∧ 0.46) ∨ 

∨ (𝜇𝐻5 ∧ 0.43) ∨ (𝜇𝐻6 ∧ 0.43) ∨ (𝜇𝐻7 ∧ 0.39) ∨ (𝜇𝐻8 ∧ 0.43) ∨ 

∨ (𝜇𝐻9 ∧ 0.53) ∨ (𝜇𝐻10 ∧ 0.57) ∨ (𝜇𝐻11 ∧ 0.39) ∨ (𝜇𝐻12 ∧ 0.46), 

𝜇𝐸3 = (𝜇𝐻7 ∧ 0.78) ∨ (𝜇𝐻8 ∧ 0.89), 

𝜇𝐸4 = (𝜇𝐻1 ∧ 0.76) ∨ (𝜇𝐻2 ∧ 0.41) ∨ (𝜇𝐻9 ∧ 0.71) ∨ 

∨ (𝜇𝐻10 ∧ 0.41) ∨ (𝜇𝐻13 ∧ 0.35) ∨ (𝜇𝐻14 ∧ 0.35), 

𝜇𝐸5 = (𝜇𝐻1 ∧ 0.38) ∨ (𝜇𝐻3 ∧ 0.47) ∨ (𝜇𝐻5 ∧ 0.38) ∨ (𝜇𝐻7 ∧ 0.90),          (14) 

where 

𝜇𝐻𝐿 = 𝜇𝐶𝐼 ∧ 𝜇𝐶𝐾 , 𝐼 = 1, … ,4, 𝐾 = 5, … ,8, 𝐿 = 1, … ,16. 

 

Let us represent the observed parameters for a specific pump: 𝑦1=19.12 m3/h; 

𝑦2=13.37 kg/cm2; 𝑦3=18.90 kw. The measures of effects significances can be defined with the 

help of the membership functions in Fig. 1,b:  

 

𝜇𝑒11(𝑦1) =0.65;  𝜇𝑒21(𝑦2) =0.59; 𝜇𝑒22(𝑦2) =0.21; 𝜇𝑒31(𝑦3) =0.48; 𝜇𝑒32(𝑦3) =0.36.   

 

The set of interval solutions of the SFRE (13) is defined as follows (Tables 2-6). The 

set of aggregating solutions �̂� is presented in Table 2. The number of aggregating solutions is 

�̂�=3. When finding the lower and upper subsets 𝑆𝑝 and 𝑆𝑝 for each aggregating solution �̂�𝑝
𝐶, 

the measures of effects significances 𝜇
𝑖

𝐸𝐽(�̂�𝑝
𝐶) in the max-min subsystems of the SFRE (13) are 

presented in Table 3, and the measures of causes combinations significances 𝜇𝐽
𝐻𝐿(�̂�𝑝

𝐶) in the 

dual min-max subsystems of the SFRE (14) are presented in Table 4.  

The set of minimal solutions 𝐵𝑝 and the set of maximal solutions 𝐵𝑝 for each aggre-

gating solution �̂�𝑝
𝐶 ∈ �̂� are presented in Tables 5, 6. The number of minimal solutions is: 

𝑍1 = 4 for �̂�1
𝐶; 𝑍2 = 8 for �̂�2

𝐶; 𝑍3 = 4 for �̂�3
𝐶. The number of maximal solutions is: 𝑍1 = 4 

for �̂�1
𝐶; 𝑍2 = 2 for �̂�2

𝐶; 𝑍3 = 2 for �̂�3
𝐶.  
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The total number of interval solutions is 𝑍 = 40, since 𝑍1 ⋅ 𝑍1 = 16 for �̂�1
𝐶; 𝑍2 ⋅ 𝑍2 =

16 for �̂�2
𝐶; 𝑍3 ⋅ 𝑍3 = 8 for �̂�3

𝐶. For each interval solution, the optimization criterion (9) takes 

the value of 𝛥(𝝁𝐶) = 0.0004. 

 

Table 2 – Set of aggregating solutions  

№ Causes significance measures  

Discharging subsystem Suction subsystem 

�̂�𝐶1 �̂�𝐶2 �̂�𝐶3 �̂�𝐶4 �̂�𝐶5 �̂�𝐶6 �̂�𝐶7 �̂�𝐶8 

1 0.59 0.21 0.65 0.65 0.48 0.65 0.21 0.21 

2 0.36 0.36 0.65 0.65 0.48 0.65 0.21 0.21 

3 0.36 0.21 0.65  0.65 0.48 0.65 0.21 0.21 

 

Table 3 – Measures of effects significances for lower subsets of interval solutions 

max-min 

subsystem 

Fuzzy effects  

J=1 J=2 J=3 J=4 J=5 

𝜇1

𝐸𝐽
 0.65 0.59/0.57/0.57 0.21/0.36/0.21 0.65 0.47/0.36/0.36 

𝜇2

𝐸𝐽
 0.65 0.65 0.21 0.48 0.38 

∧ [𝜇
𝑖

𝐸𝐽] 0.65 0.59/0.57/0.57 0.21 0.48 0.38/0.36/0.36 

 

Table 4 – Measures of causes combinations significances for upper subsets of interval solutions  

min-max 

subsystem 

Fuzzy effects  

J=1 J=2 J=3 J=4 J=5 

𝜇
𝐻1 - 0.48/0.36/0.36 - 0.48/0.36/0.36 0.38/0.36/0.36 

𝜇
𝐻2 - 0.59/0.36/0.36 - 0.41/0.36/0.36 - 

𝜇
𝐻5 - 0.21/0.36/0.21 - - 0.21/0.36/0.21 

𝜇
𝐻7 - 0.21 0.21 - 0.21 

𝜇
𝐻8 - 0.21 0.21 - - 

𝜇
𝐻9 0.32 0.48 - 0.48 - 

𝜇
𝐻10 0.65 0.57 - 0.41 - 

𝜇
𝐻14 0.65 - - 0.35 - 

∨ [𝜇𝐽
𝐻𝐿] 0.65 0.59/0.57/0.57 0.21 0.48 0.38/0.36/0.36 
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Table 5 – Set of minimal solutions  

№ Causes significance measures  

Discharging subsystem Suction subsystem 

𝜇𝐶1 𝜇𝐶2 𝜇𝐶3 𝜇𝐶4 𝜇𝐶5 𝜇𝐶6 𝜇𝐶7 𝜇𝐶8 

1,1 

1,2 
0.59 0.21 

0.65 

0 

0 

0.65 
0.48 0.65 0.21 0 

1,3 

1,4 
0.59 0.21 

0.65 

0 

0 

0.65 
0.48 0.65 0 0.21 

2,1 

2,2 
0.36 0.21 

0.65 

0.57 

0 

0.65 
0.48 0.65 0.21 0 

2,3 

2,4 
0.36 0.21 

0.65 

0.57 

0 

0.65 
0.48 0.65  0 0.21 

2,5 

2,6 
0 0.36 

0.65 

0.57 

0 

0.65 
0.48 0.65 0.21 0 

2,7 

2,8 
0 0.36 

0.65 

0.57 

0 

0.65 
0.48 0.65 0  0.21 

3,1 

3,2 
0.36 0.21 

0.65 

0.57 

0 

0.65 
0.48 0.65 0.21 0 

3,3 

3,4 
0.36 0.21 

0.65 

0.57 

0 

0.65 
0.48 0.65  0  0.21 

 

Table 6 – Set of maximal solutions  

№ Causes significance measures  

Discharging subsystem Suction subsystem 

𝜇
𝐶1 𝜇

𝐶2 𝜇
𝐶3 𝜇

𝐶4 𝜇
𝐶5 𝜇

𝐶6 𝜇
𝐶7 𝜇

𝐶8 

1,1 

1,2 
0.59 1 

0.65 

1 

0.65 

1 
0.48 

1 

0.65 
0.21 0.21 

1,3 

1,4 
0.59 0.21 

0.65 

1 

 0.65 

1 
0.48 

1 

0.65 
0.38 1 

2,1 

2,2 
0.36 0.36 

0.65 

1 

0.65 

1 
0.48 

1 

0.65 
0.21 0.21 

3,1 

3,2 
0.36 0.21 

0.65 

1 

0.65 

1 
0.48 

1 

0.65 
1 1 
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We shall describe the measures of causes significances 𝜇𝐶𝐼 by the following linguistic 

modifiers 𝛼𝐼𝐾: weak (w), moderate (m), essential (e), strong (s) decrease (D) or increase (I). 

It is supposed that the upper bounds of input parameters for each modifier are known: 

 

𝑥1(𝑤𝐼) = 1.9; 𝑥1(𝑚𝐼) = 2.4; 𝑥1(𝑒𝐼) = 2.8; 𝑥1(𝑠𝐼) = 3.2; 

𝑥2(𝑤𝐼/𝑤𝐷) = ±0.15; 𝑥2(𝑚𝐼/𝑚𝐷) = ±0.2; 𝑥2(𝑒𝐼/𝑒𝐷) = ±0.25; 𝑥2(𝑠𝐼/𝑠𝐷) = ±0.3; 

𝑥3(𝑤𝐼) = 0.9; 𝑥3(𝑚𝐼) = 1.3; 𝑥3(𝑒𝐼) = 1.7; 𝑥3(𝑠𝐼) = 2.1; 

𝑥4(𝑤𝐼) = 2.4; 𝑥4(𝑚𝐼) = 3.0; 𝑥4(𝑒𝐼) = 3.4; 𝑥4(𝑠𝐼) = 3.8; 

𝑥5(𝑤𝐼/𝑤𝐷) = ±0.2; 𝑥5(𝑚𝐼/𝑚𝐷) = ±0.3; 𝑥5(𝑒𝐼/𝑒𝐷) = ±0.4; 𝑥5(𝑠𝐼/𝑠𝐷) = ±0.5; 

𝑥6(𝑤𝐼) = 1.6; 𝑥6(𝑚𝐼) = 2.1; 𝑥6(𝑒𝐼) = 2.6; 𝑥6(𝑠𝐼) = 3.2. 

 

In this case, the constraints imposed on the measures of causes significances can be 

determined using the membership functions in Fig. 1,a: 

 

𝜇с11(𝑥1) ∈ {0.32, 0.55, 0.81, 1}; 

𝜇с21(𝑥2) ∈ {0.28, 0.50, 0.83, 1};  𝜇с22(𝑥2) ∈ {0.20, 0.38, 0.75, 1}; 

𝜇с31(𝑥3) ∈ {0.27, 0.45, 0.69, 1}; 

𝜇с41(𝑥4) ∈ {0.28, 0.52, 0.79, 1}; 

𝜇с51(𝑥5) ∈ {0.19, 0.35, 0.71, 1};  𝜇с52(𝑥5) ∈ {0.26, 0.47, 0.84, 1}; 

𝜇с61(𝑥6) ∈ {0.24, 0.41, 0.74, 1}. 

 

Under the given constraints, the set of linguistic solutions of the SFRE (13) is defined 

as follows (Tables 7-11). The set of constrained aggregating solutions �̂� is presented in Table 

7. The number of constrained aggregating solutions is �̂� = 3. When finding the lower and 

upper subsets 𝐷𝑝 and 𝐷𝑝 for each constrained aggregating solution �̂�𝑝,  the measures of ef-

fects significances 𝜇
𝑖

𝐸𝐽(�̂�𝑝) in the max-min subsystems of the SFRE (13) are presented in Ta-

ble 8, and the measures of causes combinations significances 𝜇𝐽
𝐻𝐿(�̂�𝑝) in the dual min-max 

subsystems of the SFRE (14) are presented in Table 9. 

The lower and upper subsets of complete crisp solutions 𝐷𝑝 and 𝐷𝑝 for each con-

strained aggregating solution �̂�𝑝 ∈ �̂� are presented in Tables 10, 11. The number of upper 

bounded complete crisp solutions is: 𝑄1 = 2 for �̂�1; 𝑄2 = 1 for �̂�2; 𝑄3 = 1 for �̂�3. The number 

of lower bounded complete crisp solutions is: 𝑄1 = 2 for �̂�1; 𝑄2 = 2 for �̂�2; 𝑄3 = 1 for �̂�3.  

The total number of constrained solutions is 𝑄 = 7, since 𝑄1 ⋅ 𝑄1 = 4 for �̂�1;          

𝑄2 ⋅ 𝑄2 = 2 for �̂�2; 𝑄3 ⋅ 𝑄3 = 1 for �̂�3. For each constrained solution, the optimization crite-
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rion (11) does not exceed the value of 𝛥(𝑽) = 0.0125, which allows an average absolute er-

ror of 0.05 for each equation in (13). 

 

Table 7 – Set of constrained aggregating solutions  

№ Weights of linguistic modifiers 

Discharging subsystem Suction subsystem 

�̂�1 �̂�2 �̂�3 �̂�4 �̂�5 �̂�6 �̂�7 �̂�8 

1 0100 1000 0010 0010 0100 0010 1000 1000 

2 0100 1000 0100 0010 0100 0010 1000 1000 

3 1000 1000 0010 0010 0100 0010 1000 1000 

 

Table 8 – Measures of effects significances for lower subsets of constrained solutions  

max-min 

subsystem 

Fuzzy effects  

J=1 J=2 J=3 J=4 J=5 

𝜇1

𝐸𝐽
 0.75/0.69/0.75 0.57/0.55/0.57 0.28 0.71/0.55/0.71 0.47/0.47/0.32 

𝜇2

𝐸𝐽
 0.71 0.71 0.26 0.52 0.38 

∧ [𝜇
𝑖

𝐸𝐽] 0.71/0.69/0.71 0.57/0.55/0.57 0.26 0.52 0.38/0.38/0.32 

 

Table 9 – Measures of causes combinations significances for upper subsets of constrained so-

lutions  

min-max 

subsystem 

Fuzzy effects  

J=1 J=2 J=3 J=4 J=5 

𝜇
𝐻1 - 0.52/0.52/0.32 - 0.52/0.52/0.32 0.38/0.38/0.32 

𝜇
𝐻2 - 0.55/0.55/0.32 - 0.41/0.41/0.32 - 

𝜇
𝐻5 - 0.28 - - 0.28 

𝜇
𝐻7 - 0.26 0.26 - 0.26 

𝜇
𝐻8 - 0.24 0.24 - - 

𝜇
𝐻9 0.32 0.52/0.38/0.52 - 0.52/0.38/0.52 - 

𝜇
𝐻10 0.71/0.38/0.71 0.57/0.38/0.57 - 0.41/0.38/0.41 - 

𝜇
𝐻14 0.69 - - 0.35 - 

∨ [𝜇𝐽
𝐻𝐿] 0.71/0.69/0.71 0.57/0.55/0.57 0.26 0.52 0.38/0.38/0.32 
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Table 10 – Lower subsets of complete crisp solutions  

№ Weights of linguistic modifiers 

Discharging subsystem Suction subsystem 

�⃖�    1 �⃖�    2 �⃖�    3 �⃖�    4 �⃖�    5 �⃖�    6 �⃖�    7 �⃖�    8 

1,1 

1,2 
0100 1000 

0010 

1110 

1110 

0010 
0100 0010 1000 1000 

2,1 0100 1000 1100 0010 0100 0010 1000 1000 

3,1 1000 1000 0010 1110 0100 0010 1000 1000 

 

Table 11 – Upper subsets of complete crisp solutions  

№ Weights of linguistic modifiers 

Discharging subsystem Suction subsystem 

𝑾     1 𝑾     2 𝑾     3 𝑾     4 𝑾     5 𝑾     6 𝑾     7 𝑾     8 

1,1 

1,2 
0100 

1111 

1000 
0011 0011 0100 0010 1000 

1000 

1111 

2,1 

2,2 
0100 

1111 

1000 
0100 0010 

0111 

0100 
0011 1000 

1000 

1111 

3,1 1000 1000 0011 0011 0100 0010 1111 1111 

 

Thus, for the observed state of the piston pump, the constrained solutions provide the 

linguistic interpretation of the interval solutions in the form of the set of explanations:  

 

(𝑥1=wI–mI OR 𝑥2=eI–sI OR 𝑥3=wI–sI) AND (𝑥4=mI     OR 𝑥5=eD       OR 𝑥6=wI–sI); 

(𝑥1= mI      OR 𝑥2=wI–sI OR 𝑥3=eI–sI) AND (𝑥4=mI     OR 𝑥5=eD       OR 𝑥6=wI–sI); 

(𝑥1= mI      OR 𝑥2=wI–mI OR 𝑥3=eI)    AND (𝑥4=mI–sI OR 𝑥5=eD–sD OR 𝑥6= wI); 

(𝑥1= mI      OR 𝑥2= wI–mI OR 𝑥3=eI)   AND (𝑥4=mI      OR 𝑥5=eD-sD OR 𝑥6=wI-sI). 

 

For each significance level of faults, the accuracy characteristics of the genetic algo-

rithm are given in Table 12 as the ratio of the number of correct diagnoses to the number of 

cases in the dataset. Correctness of diagnostics at the level of 95% can be attained while eval-

uating the faults significance measures using four levels described by linguistic modifiers.  
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Table 12 – Accuracy characteristics of the genetic algorithm 

Significance 

level of  

faults  

Probability of correct diagnosis 

Discharging subsystem Suction subsystem 

с11 с21 с22 с31 с41 с51 с52 с61 

wI 

(wD) 

62/65 

= 

0.95 

27/27 = 

1.0 

33/34 = 

0.97 

80/84 = 

0.95 

71/73 = 

0.97 

27/28 = 

0.96 

25/25 = 

1.0 

67/69 = 

0.97 

mI 

(mD) 

75/78 

= 

0.96  

34/35 = 

0.97 

47/49 = 

0.96 

76/79 = 

0.96 

78/82 = 

0.95 

39/41 = 

0.95 

35/36 = 

0.97 

82/85 = 

0.96 

eI 

(eD) 

92/96 

= 

0.96 

42/44 = 

0.95 

51/53 = 

0.96 

88/90 = 

0.98 

85/89 = 

0.95 

45/47 = 

0.96 

57/60 = 

0.95 

78/82 = 

0.95 

sI 

(sD) 

50/51 

= 

0.98 

19/20 = 

0.95 

28/28 = 

1.0 

37/37 = 

1.0 

44/46 = 

0.96 

23/24 = 

0.96 

28/29 = 

0.97 

53/54 = 

0.98 

 

6. Estimating the efficiency of genetic search for the set of constrained solutions 

Following (Peeva and Kyosev 2004), the problem of finding the set of solutions of the 

max-min SFRE belongs to the class of NP-hard problems with time complexity O(N!), and 

determination of the maximum number of minimal solutions is a still open combinatorial 

problem. Therefore, in (Rakityanskaya and Rotshtein 2007, Rotshtein and Rakytyanska 

2009), the genetic algorithm for solving the max-min SFRE was proposed. This section com-

pares performance estimates of genetic search for interval and constrained solutions of the 

extended SFRE. When finding the set of solutions, the genetic algorithm includes formation 

of the null solution, the single lower (upper) bound, the set of lower (upper) bounds (Rot-

shtein and Rakytyanska 2011, 2012). 

For both interval and constrained solutions, the search for the lower and upper subsets 

is distributed between two computers of the local computing cluster. The quad-core (Intel 

Core i5-7400 3.0 Ghz) processor provides parallelization of the independent processes of 

finding the lower subsets 𝑆𝑝 or 𝐷𝑝 for each aggregating solution �̂�𝑝
𝐶, 𝑝 = 1, … , �̂�, or �̂�𝑝, 𝑝 =

1, … , �̂�. Similarly, the search for the upper subsets 𝑆𝑝 or 𝐷𝑝 is parallelized. For both lower 

and upper subsets, the number of independent processes is equal to the number of aggregating 

solutions �̂� or �̂�.  
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When searching for a null solution, the chromosome can be significantly shortened.  

Let 𝐿0 (𝐿0
𝑐 ) be the chromosome length for the null ordinary (constrained) solution. To code 

the ordinary solutions 𝜇𝐶𝐼 ∈ [0,  1], 𝐼 = 1, … , 𝑁, with an accuracy of 2 digits, 𝐿0=7N. To code 

the constrained solutions 𝑾𝐼, 𝐼 = 1, … , 𝑁, at the 𝑔𝐼 = 4 levels, 𝐿0
𝑐 =2N.  

When searching for a single lower (upper) solution, the stepwise procedure for 

covering intervals is simplified. Let 𝑇1 (𝑇1
𝑐) be the number of iterations of the incremental 

search for the interval (constrained) solution. When finding the single lower (upper) bound 

𝜇𝐶𝐼  (𝜇
𝐶𝐼), 𝐼 = 1, … , 𝑁, the number of iterations depends on the null solution and can reach the 

maximum value for the widest interval [0, 1]. To avoid omitting the minimal (maximal) 

solutions, the step is 0.01 to provide an accuracy of 2 digits, that is, for the widest interval 

𝑇1=100. When covering intervals by the complete crisp solutions �⃖�    𝐼 (𝑾     𝐼), 𝐼 = 1, … , 𝑁, the 

number of iterations does not exceed the number of linguistic modifiers, that is, 𝑇1 = 𝑔𝐼 = 4. 

When searching for a set of bounded solutions, the repeated runs of the genetic 

algorithm are shortened due to reduction of the number of constrained solutions. Let �̂�𝑚𝑎𝑥 

(�̂�𝑚𝑎𝑥) be the maximum number of ordinary (constrained) aggregating solutions; 𝑍𝑚𝑎𝑥 

(𝑄𝑚𝑎𝑥) be the maximum number of lower or upper ordinary (constrained) solutions for each 

solution subset. Following (Bartl and Belohlavek 2015), we estimate the maximum number of 

aggregating and minimal (maximal) solutions for the following problem size: n=2, M=4…10, 

N=2M=8...20, where n is the number of max-min subsystems. Based on the assumption that 

the solution takes either the lower or the upper value, 𝑍𝑚𝑎𝑥 = 2𝑁/2 (Bartl and Belohlavek 

2015). Similarly, if aggregation is provided by one of the subsystems, �̂�𝑚𝑎𝑥 = 𝑛𝑀.  

Under constraints (6) imposed on the solution granularity, the probability of finding all 

the minimal (maximal) solutions is proportional to the chromosome length and is equal to 

𝐿0
𝑐 /𝐿0. Using the probabilistic approach to estimating the number of constrained solutions 

(Bartl and Trnecka 2021), for both minimal (maximal) and aggregating solutions 

𝑄𝑚𝑎𝑥=𝑍𝑚𝑎𝑥 ⋅ (𝐿0
𝑐 /𝐿0) and �̂�𝑚𝑎𝑥=�̂�𝑚𝑎𝑥 ⋅ (𝐿0

𝑐 /𝐿0). Thus, for the given problem size, the 

number of repeated runs of the genetic algorithm required to find the complete solution set is 

reduced from 𝑍𝑚𝑎𝑥=�̂�𝑚𝑎𝑥=24…210=16…1024 to 𝑄𝑚𝑎𝑥=�̂�𝑚𝑎𝑥=24⋅(2/7)…210⋅(2/7)=5…293 

for each session of the pool of optimization problems (9) or (11).   

Thus, the piston pump diagnostics requires multiple solving the optimization problem 

(9) or (11) with �̂�𝑚𝑎𝑥=16 (�̂�𝑚𝑎𝑥=5) aggregating solutions; 𝑍𝑚𝑎𝑥=16 (𝑄𝑚𝑎𝑥=5) lower (upper) 

solutions inside �̂� = 3 (�̂� = 3) parallel independent processes. Generation of interval and 

constrained solutions using principles of parallel computing requires 12 min and 3 min, re-

spectively, which reduces the diagnostic time by 75%. 
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7. Conclusions 

Even though the methods for solving the max-min SFRE are well developed, the ap-

plications for multifactorial dependencies require solving the extended max-min SFRE. Be-

sides, for practical purposes it is sufficient to represent solutions in the form of linguistic 

modifiers that resolve the problem of finding all minimal solutions and eliminate excessive 

granularity (Bartl et al. 2012; Bartl and Trnecka 2021). When investigating the properties of 

the solution set, new types of solutions are introduced. Aggregating solutions make it possible 

to decompose the set of solutions into the lower and upper subsets defined by the unique 

greatest (least) aggregating solution and a set of minimal (maximal) solutions. To ensure in-

terpretability of the interval solutions, the granular structure of the solution set is replaced by 

the relational one in the form of complete crisp solutions, that is maximum solutions for the 

vectors of binary weights of the linguistic modifiers.  

Finding the solution set is reduced to solving the optimization problem using the ge-

netic algorithm. The properties of the solution set allow us to parallelize the genetic search for 

the lower and upper subsets separated by the aggregating solutions. When solving the pool of 

optimization problems, the imposed constraints make it possible to simplify the search for the 

null solution; the single interval solution; the set of interval solutions. The computation time 

is shortened due to reduction of the number of the constrained aggregating and minimal (max-

imal) solutions proportionally to the chromosome length. With a given number of linguistic 

modifiers, the time required to form intervals using the complete crisp solutions is sharply 

decreased. The accuracy of the inverse inference is ensured by tuning the fuzzy relation mod-

el using experimental data. 

Further research is to develop an inverse inference method based on a modified fuzzy 

relation matrix. In this case, the cause-effect connections are given by the linguistic modifiers 

(Bartl et al. 2012; Bartl and Trnecka 2021), and the constraints are imposed on the values of 

fuzzy relations. In addition to solving the problem of solutions sensitivity to changes in the 

model parameters, this approach will also simplify the search for the solution set of the SFRE. 
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frequency signals” project. 
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