Показати скорочену інформацію

dc.contributor.authorЧернетченко, Дмитро Володимировичuk
dc.contributor.authorЧернетченко, Дмитрий Владимировичru
dc.contributor.authorChernetchenko, D. V.en
dc.date.accessioned2020-01-09T13:37:29Z
dc.date.available2020-01-09T13:37:29Z
dc.date.issued2019
dc.identifier.citationЧернетченко Д. В. Метод та апаратно-програмний засіб обробки електрокардіографічних сигналів за допомогою штучних мультистабільних нейронних мереж [Текст] : автореф. дис. ... канд. техн. наук : 05.11.17 / Дмитро Володимирович Чернетченко ; Вінницький національний технічний університет. – Вінниця, 2019. – 27 с. – Бібліогр. : с. 19-21 (20 назв).uk
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/28216
dc.description.abstractДисертаційна робота присвячена розробленню програмно-апаратного комплексу для автоматизованого моніторингу ризиків виникнення серцево- судинних захворювань методом реєстрації та аналізу електрокардіографічних сигналів людини. Запропоновано модель штучної нейронної мережі, яка використовується для вирішення задачі розпізнавання типових ознак ЕКГ-сигналів в режимі реального часу. Розроблено нову модель штучного нейрону із біологічним ступенем подібності процесів та властивістю електричної мультистабільності, яку описано за допомогою формального математичного апарату аналітичним розв’язком для випадку лінеаризованих функцій активації. Головними перевагами розробленої моделі штучної нейронної мережі є достатня для здійснення обчислювань в реальному часі потужність на ряду із можливістю оптимальної апаратної реалізації за допомогою ПЛІС-архітектури. Розроблено: універсальну схему реєстрації ЕКГ-сигналу або ЕКГ- фронтенд; вбудоване програмне забезпечення мікроконтролеру та процесору із ПЛІС-архітектурою, або нейроморфний модуль.uk
dc.description.abstractДиссертационная работа посвящена разработке программно-аппаратного комплекса для автоматизированного мониторинга рисков возникновения сердечно-сосудистых заболеваний методом регистрации и анализа электрокардиографических сигналов человека. Предложена модель искусственной нейронной сети, которая используется для решения задачи распознавания типичных признаков ЭКГ-сигналов в режиме реального времени. Разработана новая модель искусственного нейрона с биологической степенью сходства процессов и свойством электрической мультистабильности, которую описано при помощи формального математического аппарата аналитическим решением для случая линеаризованных функций активации. Главными преимуществами разработанной модели искусственной нейронной сети есть достаточная для осуществления вычислений в реальном времени мощность на ряду с возможностью оптимальной аппаратной реализации с помощью ПЛИС-архитектуры. Разработано: универсальную схему регистрации ЭКГ-сигнала или ЭКГ- фронтенд; встроенное программное обеспечение микроконтроллера и процессора с ПЛИС-архитектурой или нейроморфний модуль.ru
dc.description.abstractThe dissertation project is related to the development of the original software and hardware complex for automated monitoring of the risks of cardiovascular diseases (CVD) by the method of registration and analysis of electrocardiographic (ECG) signals of a person. The analysis of modern software and hardware solutions of automated control of physiological parameters of human health by means of electrocardiographic signals were discovered. With the help of modern theoretical knowledge based on machine learning methodology, a new model of artificial neural models was proposed, which used for effectively solution of the problem of recognizing the typical features of ECG-signals in real time. The original model of artificial neuron with biological complexity of processes and the property of electric multistability was developed. The model described using a formal mathematical apparatus, and has analytical solutions for the case of piecewise linearized function of activation. Software for the synthesis and modeling of artificial neurons with a predetermined number of stability states was developed. Examples of successful synthesis of neurons with two, three, and four stationary stability states were considered. It is shown that the neuronal structures with more stable states are capable to generate more complex patterns of output electrical activity, and therefore can perform more complex calculations within the system of computing units. The main limits and conditions of application of the developed artificial model were established. The main advantages of the developed model of the artificial neural network: high computing power, which is necessary for real-time signals processing, also with the implemented memory function, as well as the possibility of easy hardware implementation with a microprocessor based on FPGA architecture. The original model of an artificial neuron is used in the context of the computational spiking neural network (SNN). Commercial product was successfully implemented (also known as SenceBand) is cardiac heart-rate variability (HRV) monitor based of instrumental development and research. Also, co-authored of two patents at United States Patent and Trademark Office (USPTO). The research results are implemented in the research work of related higher educational institutions of Ukraine.en
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.subjectбіологічні та медичні прилади і системиuk
dc.subjectбиологические и медицинские приборы и системыru
dc.subjectbiological and medical devices and systemsen
dc.subjectсерцево-судинні захворюванняuk
dc.subjectелектрокардіограмаuk
dc.subjectваріабельність серцевого ритмуuk
dc.subjectштучні нейронні мережіuk
dc.subjectнейроморфні комп’ютериuk
dc.subjectмікроконтролериuk
dc.subjectімпульсні нейронні мережіuk
dc.subjectмоделі нейронівuk
dc.subjectмультистабільні нейрониuk
dc.subjectсердечно-сосудистые заболеванияru
dc.subjectэлектрокардиограммаru
dc.subjectвариабельность сердечного ритмаru
dc.subjectискусственные нейронные сетиru
dc.subjectнейроморфные компьютерыru
dc.subjectмикроконтроллерыru
dc.subjectимпульсные нейронные сетиru
dc.subjectмодели нейроновru
dc.subjectмультистабильные нейроныru
dc.subjectcardiovascular diseasesen
dc.subjectelectrocardiogramen
dc.subjectheart rate variabilityen
dc.subjectartificial neural networksen
dc.subjectneuromorphic computersen
dc.subjectmicrocontrollersen
dc.subjectspiking neural networken
dc.subjectneuron modelsen
dc.subjectmultistable neuronsen
dc.titleМетод та апаратно-програмний засіб обробки електрокардіографічних сигналів за допомогою штучних мультистабільних нейронних мережuk
dc.title.alternativeМетод и аппаратно-программное средство обработки электрокардиографических сигналов с помощью искусственных мультистабильних нейронных сетейru
dc.title.alternativeThe method and hardware-software implementation of electrocardiac signals processing using artificial multistable neural networken
dc.typeAbstract
dc.identifier.udc616-71:004.032.26


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію