Показати скорочену інформацію

dc.contributor.authorPavlov, S. V.en
dc.contributor.authorWójcik, W.en
dc.contributor.authorHolyaka, R. L.en
dc.contributor.authorAzarov, O. D.en
dc.contributor.authorBohomolov, S. V.en
dc.contributor.authorLongyin, Y.en
dc.date.accessioned2023-01-19T14:48:59Z
dc.date.available2023-01-19T14:48:59Z
dc.date.issued2022
dc.identifier.citationAnalysis of development state of the thermal flow sensors of general, biomedical and ecological designation [Text] / S. V. Pavlov, W. Wójcik, R. L. Holyaka [et al.] // Оптико-електронні інформаційно-енергетичні технології. – 2022. – № 1. – С. 82-93.uk
dc.identifier.issn1681-7893
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/36206
dc.description.abstractВ роботі проаналізовано характеристики мікроелектронних сенсорів потоку, що дозволило зробити низку важливих висновків, а саме: сучасні мікроелектронні теплові сенсори потоку, і зокрема сенсори біомедичного призначення, характеризуються значним різноманіттям принципів формування сигналу – від елементарних лінійних перетворювачів на основі одного чутливого елементу і до нелінійних (генераційних, часозалежних) перетворювачів на основі матриць функціонально інтегрованих елементів. Актуальною залишається проблема енергоспоживання теплових сенсорів потоку. Особливо це характерно при живленні сенсорів призначення від автономних, тобто, малогабаритних малопотужних низьковольтних електрохімічних елементів. Зменшення енергоспоживання (потужності та температури нагріву) призводить до виникнення паразитного впливу опорів сигнальних ліній і, як наслідок, до погіршення функціональних характеристик, зокрема, зменшення точності вимірювання швидкості потоку.uk
dc.description.abstractThe paper analyzed the characteristics of microelectronic flow sensors, which made it possible to draw a number of important conclusions, namely: modern microelectronic thermal flow sensors, and in particular biomedical sensors, are characterized by a significant variety of principles of signal formation - from elementary linear converters based on one sensitive element to non-linear ones ( generation, time-dependent) converters based on matrices of functionally integrated elements. The problem of energy consumption of thermal flow sensors remains relevant. This is especially characteristic when powering destination sensors from autonomous, i.e., small-sized, low-power, low-voltage electrochemical cells. A decrease in energy consumption (power and heating temperature) leads to the parasitic effect of signal line resistances and, as a result, to the deterioration of functional characteristics, in particular, to a decrease in the accuracy of flow rate measurement.
dc.language.isoenuk_UA
dc.publisherВНТУuk
dc.relation.ispartofОптико-електронні інформаційно-енергетичні технології. № 1 : 82-93.
dc.relation.urihttps://oeipt.vntu.edu.ua/index.php/oeipt/article/view/617
dc.subjectтеплові сенсори потокуuk
dc.subjectсигнальні перетворювачіuk
dc.subjectінтегральна електроніка біомедичногоuk
dc.subjectекологічного призначенняuk
dc.subjectthermal flow sensorsen
dc.subjectsignal convertersen
dc.subjectintegrated biomedical and ecological electronicsen
dc.titleAnalysis of development state of the thermal flow sensors of general, biomedical and ecological designationen
dc.typeArticle
dc.identifier.udc615. 471.03:616.073
dc.relation.referencesB.W. van Oudheusden. Silicon thermal flow sensors // Sensors and Actuators A: Phys. – 1992. № 30. – PP. 5–26.en
dc.relation.referencesM. Ashauer, H. Glosch, F. Hedrich, N. Hey, H. Sandmaier, W. Lang. Thermal flow sensor for liquids and gases based on combinations of two principles // Sensors and Actuators A. – 1999. Vol. 73. – PP. 7-13.en
dc.relation.referencesF. Jiang, Y.-C. Tai, C.-M. Ho, R. Karan, M. Garstenauer. Theoretical and experimental studies of micromachined hot-wire anemometers // International Electron Devices Meeting (IEDM), San Francisco, December 11–14. – 1994. PP. 139-142.en
dc.relation.referencesJ.J. van Baar, R.W. Wiegerink, T.S.J. Lammerink, G.J.M. Krijnen, M. Elwenspoek. Micromachined structures for the thermal measurements of fluid and flow parameters // J. Micromech. Microeng. – 2001. – № 11. – PP. 311–318.en
dc.relation.referencesT. S. T. Lammerink, N. R. Tas, M. Elwenspoek, J. H. J. Fluitman. Micro-liquid flow sensor // Sensors and Actuators A. – 1993. – PP. 45-50.en
dc.relation.referencesP.M. Handford, P. Bradshaw. The pulsed-wire anemometer // Exp. Fluids 7. – 1989. – PP. 125–132.en
dc.relation.referencesEllis Menga, Po-Ying Li, Yu-Chong Tai. A biocompatible Parylene thermal flow sensing array // Sensors and Actuators A. – 2008. № 144. –PP. 18–28.en
dc.relation.referencesBartsch de Torres, C. Renschb, T. Thelemannc, J. Müller, M. Hoffmann. Fully Integrated Bridge-type Anemometer in LTCC-based Microfluidic Systems Advances // Science and Technology. – 2008. Vol. 54. – PP. 401 - 404. Online at http://www.scientific.net.en
dc.relation.referencesA. Margelov. Honeywell gas flow sensors [Electronic resource] / A. Margelov // Chip News. — 2005. — № 9 (102). — С.56—58. —www.chip-news.ru.en
dc.relation.referencesN.-T. Nguyen, W. Dotzel. Asymmetrical locations of heaters and sensors relative to each other using heater arrays: a novel method for designing multi-range electrocaloric mass-flow sensors // Sensors and Actuators: A Phys. – 1997. Vol. 62. – PP. 506–512.en
dc.relation.referencesN. Sabate, J. Santande, L. Fonseca, I. Gracia, C. Cane. Multi-range silicon micromachined flow sensor // The 16th European Conference on Solid-State Transducers. – 2002. – PP. 202-205.en
dc.relation.referencesIhsan Hariadi, Hoc-Khiem Trieu, Wilfried Mokwa, Holger Vogt. М. Integrated МFlow Sensor with Monocrystalline Silicon Membrane Operating in Thermal Time-of-Flight Mode // The 16th European Conference on Solid-State Transducers. – 2002. – PP.115-116.en
dc.relation.referencesELDRIDGE PRODUCTS INC - Thermal Gas Mass Flow Measurement and Control Instrumentation. [Електронний ресурс]: http://www.cmctechnologies. com.au/ index.htm.en
dc.relation.referencesТермоанемометры Testo 405, Testo 425. [Електронний ресурс]: ]:http://www. inducr.com.ua .ru
dc.relation.referencesY. Fang and W. W. Liou. Computations of the Flow and Heat Transfer in Microdevices Using DSMC With Implicit Boundary Conditions // J. Heat Transfer. – 2002. Vol. 124. – PP. 338-345.en
dc.relation.referencesW.W. Liou and Y. Fang. Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in MEMS Flow Predictions // CMES. – 2000. – Vol. 1, No. 4, –PP. 119-128.en
dc.relation.referencesY. Weiping, L. Chong, L. Jianhua, M. Lingzhi and N. Defang. Thermal distribution microfluidic sensor based on silicon // Sensors and Actuators B. – 2005. – Vol. 108. – PP.943-946.en
dc.relation.referencesZ.Yu. Gotra, R.L. Holyaka, S.S. Kulenko, V.E. Erashok. Controller of the temperature regime of thermo-anemometric flow sensors // Elektronika i svyaz. – 2009. – No. 2-3. - P.22-27.en
dc.relation.referencesZ.Yu. Gotra, R.L. Holyaka, S.V. Pavlov, S.S. Kulenko. Principles of electrothermal modeling of electronic circuits with dynamic self-heating of elements // Electronics. Bulletin of the Lviv Polytechnic National University. - 2009. - No. 646. - P.57-65.en
dc.relation.referencesZ.Yu. Gotra, R.L. Holyaka, S.V. Pavlov, S.S. Kulenko. Microelectronic thermal flow sensors in biomedical research // Measuring and computing technology in technological processes. – 2008. – No. 2. – P. 122 – 128.en
dc.relation.referencesZ.Yu. Gotra, R.L. Holyaka, S.V. Pavlov, S.S. Kulenko, O.V. Manus Differential thermometer with high resolution // Technology and construction in electronic equipment. - 2009. - No. 6 (84). - P. 19 - 23.З.Ю.en
dc.relation.referencesPavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.en
dc.relation.referencesWójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.en
dc.relation.referencesHighly linear Microelectronic Sensors Signal Converters Based on Push-Pull Amplifier Circuits / edited by Waldemar Wojcik and Sergii Pavlov, Monograph, (2022) NR 181, Lublin, Comitet Inzynierii Srodowiska PAN, 283 Pages. ISBN 978-83-63714-80-2.en
dc.relation.referencesPavlov Sergii, Avrunin Oleg, Hrushko Oleksandr, and etc. System of three-dimensional human face images formation for plastic and reconstructive medicine // Teaching and subjects on bio-medical engineering Approaches and experiences from the BIOART-project Peter Arras and David Luengo (Eds.), 2021, Corresponding authors, Peter Arras and David Luengo. Printed by Acco cv, Leuven (Belgium). - 22 P. ISBN: 978-94-641-4245-7.en
dc.relation.referencesKukharchuk, Vasyl V., Sergii V. Pavlov, Volodymyr S. Holodiuk, Valery E. Kryvonosov, Krzysztof Skorupski, Assel Mussabekova, and Gaini Karnakova. 2022. "Information Conversion in Measuring Channels with Optoelectronic Sensors" Sensors 22, no. 1: 271. https://doi.org/10.3390/s22010271en
dc.relation.referencesAvrunin, O.G.; Nosova, Y.V.; Pavlov, S.V.; Shushliapina, N.O.; and etc. Research Active Posterior Rhinomanometry Tomography Method for Nasal Breathing Determining Violations. Sensors 2021, 21, 8508. doi: 10.3390/s21248508, https://www.mdpi.com/1424-8220/21/24/8508.en
dc.relation.referencesAvrunin, O.G.; Nosova, Y.V.; Pavlov, S.V.; and etc. Possibilities of Automated Diagnostics of Odontogenic Sinusitis According to the Computer Tomography Data. Sensors 2021, 21, 1198. https://doi.org/10.3390/ s21041198.en
dc.relation.referencesVasyl V. Kukharchuk, Sergii V. Pavlov, Samoil Sh. Katsyv, and etc. “Transient analysis in 1st order electrical circuits in violation of commutation laws”, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 9/2021, p. 26-29, doi:10.15199/48.2021.09.05en
dc.relation.referencesSensors of electric magnetic radiation for bioengineering research / G. S. Tymchyk; V. I. Skytsiuk, M. A. Waintraub, T. R. Klochko. – K. : S.E. Lesia, 2004. – 64 p.en
dc.relation.referencesOsadchuk O. V Microelectronic frequency converters on the base of the transistor structures with negative resistance / O. V. Osadchuk. – Vinnytsia: UNIVERSUM- Vinnytsia, 2000. – 303 p.en
dc.identifier.doiPavlov S. V., Wójcik W., Holyaka R. L., Azarov O. D., Bohomolov S. V., Longyin Y. Analysis of development state of the thermal flow sensors of general, biomedical and ecological designation. Оптико-електронні інформаційно-енергетичні технології. 2022. № 1. С. 82-93.


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію