dc.contributor.author | Іванчук, Я. В. | uk |
dc.contributor.author | Іскович-Лотоцький, Р. Д. | uk |
dc.contributor.author | Добровольська, К. В. | uk |
dc.contributor.author | Замковий, О. Д. | uk |
dc.contributor.author | Павлович, Р. І. | uk |
dc.contributor.author | Ivanchuk, Ya. V. | en |
dc.contributor.author | Iskovych-Lototskyi, R. D. | en |
dc.contributor.author | Dobrovolska, K. V. | en |
dc.contributor.author | Zamkovyi, О. D. | en |
dc.contributor.author | Pavlovych, R. І. | en |
dc.date.accessioned | 2023-05-12T07:10:17Z | |
dc.date.available | 2023-05-12T07:10:17Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Математичне моделювання напруженого стану ґрунтового середовища [Текст] / Я. В. Іванчук, Р. Д. Іскович-Лотоцький, К. В. Добровольська [та ін.] // Вісник ВПІ. – 2022. – № 1. – С. 103–111. | uk |
dc.identifier.citation | Іванчук Я. В., Іскович-Лотоцький Р. Д., Добровольська К. В., Замковий О. Д., Павлович Р. І. Математичне моделювання напруженого стану ґрунтового середовища. Вісник ВПІ. 2022. № 1. С. 103–111. | uk |
dc.identifier.issn | 1997-9266 | |
dc.identifier.uri | http://ir.lib.vntu.edu.ua//handle/123456789/37129 | |
dc.description.abstract | Розроблена математична модель, яка описує напружений стан ґрунтового середовища. Базова розрахункова модель ґрунтового масиву представлена у вигляді дисперсного середовища, напружений стан якого описується дискретно-континуальною моделлю під дією усіх складових напружень. Такий підхід дозволив використати основні положення теорії пружності для побудови системи диференціальних рівнянь рівноваги дисперсного середовища для плоскої постановки задачі, а також використати ймовірнісні властивості дисперсних середовищ для розв’язку систем диференціальних рівнянь, які описують розподіл напружень в розпірному дисперсному середовищі із розподільною властивістю. Під дією на ґрунтовий масив зовнішнього навантаження у вигляді зосередженої сили отримано диференціальне рівняння розподілу вертикального нормального напруження параболічного типу, як один з різновидів рівняння теплопровідності. Для розв’язку диференціальних рівнянь розподілу вертикальних напружень використаний підхід застосування експоненціальної функції, яка дозволяє забезпечувати симетричність розподілу напружень відносно лінії дії зосередженої вертикальної сили і харак-теризувати структуру самого ґрунтового середовища. Для визначення адекватності розробленої математичної моделі напруженого стану ґрунтового масиву використано зовнішнє навантаження у вигляді сили, заданої нормальною функцією розподілу по поверхні ґрунтового масиву. На основі розрбленої математичної моделі отримано функцію розподілу дотичних, нормальних вертикальних і горизонтальних напружень для нормального зовнішнього силового навантаження на ґрунтовий масив. Порівняльний аналіз результатів теоретичних і експериментальних дослідження на дослідному зразку типу дрібний пісок показав високий ступінь адекватності розробленої математичної моделі напруженого стану ґрунтового середовища. | uk |
dc.description.abstract | A mathematical model has been developed that describes the stress state of the soil environment. The basic calculation model of the soil massif is presented in the form of a dispersed medium. Its stress state is described by a discrete-continuum model under the action of all stress components. This approach made it possible to use the main provisions of the theory of elasticity to construct a system of differential equations for the equilibrium of a disperse medium in a plane formulation of the problem. It also makes it possible to use the probabilistic properties of dispersed media to solve systems of differential equations that describe the distribution of stresses in a spacer dispersive medium with a distributive property. When an external load in the form of a concentrated force is applied to the soil mass, a differential equation for the distribu-tion of the vertical normal stress of a parabolic type was obtained. It is one of the varieties of the heat equation. To solve the differential equations for the distribution of vertical stresses, the approach of applying an exponential function is used. It allows to ensure the symmetry of the distribution of stresses with respect to the line of action of the concentrated vertical force. It also allows characterizing the structure of the soil environment itself. To determine the adequacy of the developed mathematical model of the stress state of the soil mass, an external load in the form of a force was used. This force is given as a normal distribution function over the surface of the soil mass. Based on the developed mathematical model, the distri-bution function of tangential, normal vertical and horizontal stresses was obtained for a normal external force load on the soil mass. A comparative analysis of the results of theoretical and experimental studies on a prototype fine sand type showed a high degree of adequacy of the developed mathematical model of the stress state of the soil environment. | en |
dc.language.iso | uk_UA | uk_UA |
dc.publisher | ВНТУ | uk |
dc.relation.ispartof | Вісник ВПІ. № 1 : 103–111. | uk |
dc.relation.uri | https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2739 | |
dc.subject | ґрунт | uk |
dc.subject | дисперсне середовище | uk |
dc.subject | математична модель | uk |
dc.subject | напруження | uk |
dc.subject | структура | uk |
dc.subject | диференціальні рівняння | uk |
dc.subject | soil | en |
dc.subject | disperse medium | en |
dc.subject | mathematical model | en |
dc.subject | stress | en |
dc.subject | structure | en |
dc.subject | differential equations | en |
dc.title | Математичне моделювання напруженого стану ґрунтового середовища | uk |
dc.title.alternative | Mathematical Modeling of the Soil Environment Stress State | en |
dc.type | Article | |
dc.identifier.udc | 62-977 | |
dc.relation.references | Р. Д. Іскович-Лотоцький, і Я. В. Іванчук, «Підвищення ефективності розвантаження матеріалів під дією періоди-чних ударних імпульсів,» Вібрації в техніці і технологіях, № 2 (51), с. 8-11, 2008. | uk |
dc.relation.references | М. Н. Гольдштейн, А. А. Царьков, и И. И. Черкасов, Механика грунтов, основания и фундаменты. М.: Транспорт, 1981, 342 с. | ru |
dc.relation.references | Р. Д. Іскович-Лотоцький, і Я. В. Іванчук, «Дослідження динаміки процесу роботи універсального гідравлічного віброудраного приводу для розвантаження транспортних засобів,» Наукові нотатки. Міжвузівський збірник (за напря-мом «Інженерна механіка»), Луцьк, № 20, с. 184-187, 2007. | uk |
dc.relation.references | Rostislav D. Iskovych-Lototsky, et al. “Automatic system for modeling vibro-impact unloading bulk cargo on vehicles,” Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 1080860 (1 October 2018). https://doi.org/10.1117/12.2501526 . | en |
dc.relation.references | Rostislav D. Iskovych-Lototsky, Yaroslav V. Ivanchuk, Yaroslav P. Veselovsky, Konrad Gromaszek, and Ayaulym Oral-bekova, “Automatic system for modeling of working processes in pressure generators of hydraulic vibrating and vibro-impact machine,” Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Expe-riments 2018, 1080850 (1 October 2018). https://doi.org/ 10.1117/12.2501532 . | en |
dc.relation.references | Р. Д. Іскович-Лотоцький, Я. В. Іванчук, і Я. П. Веселовський, «Основи резонансно-структурної теорії віброударного ро-звантаження транспортних засобів,» Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту ім. академіка В. Лазаряна, № 5 (53), с. 109-118, 2014. https://doi.org/10.15802/stp2014/30458 . | uk |
dc.relation.references | J. Feda, “Mechanics of particulate materials. The principles.,” Development in geotechnical engineering, vol. 30. Czechoslovak Academy of sciences, Institute of theoretical and applied mechanics, Prague. Elsevier, Amsterdam, Oxford, New York, 1982. | en |
dc.relation.references | И. И. Кандауров, Механика зернистых сред и ее применение в строительстве, 2-е изд., испр. и перераб. Л.: Стройиздат, Ленингр. Отд-ние, 1988, 280 с. | ru |
dc.relation.references | S. Matysiak, and P. Pusz, “Axisummetric bousinesg problem for a granular hal,” Bulletin of Polish Academie of Scienes, Technical Sciences, no. 33 (7/8), pp. 351-358, 1985. | en |
dc.relation.references | J. Israelachvili, Intermolecular and Surface Forces, London: Academic Press, 1985-2004. | en |
dc.relation.references | N. A. Peresti︠u︡ k, Differential equations with impulse effects: Multivalued right-hand sides with discontinuities. Berlin, Deutschland: De Gruyter, 2011. | en |
dc.relation.references | D. I. Zolotarevskaya, “Mathematical simulation and calculation of the soil compaction under dynamic loads,” Eurasian Soil Science, № 44 (4), pp. 407-416, 2011. https://doi.org/10.1134/s1064229311040144 . | en |
dc.relation.references | M. Krausz, Methode zur Abschätzung der Ergebnisqualität von modularen Gesamtfahrzeugsimulationsmodellen. Wies-baden: Springer Fachmedien Wiesbaden, 2017. | en |
dc.relation.references | A. Li, F. Dai, N. Xu, G. Gu, and Z. Hu, “Analysis of a Complex Flexural Toppling Failure of Large Underground Ca-verns in Layered Rock Masses,” Rock Mechanics and Rock Engineering, 2019. https://doi.org/10.1007/s00603-019-01760-5. | en |
dc.relation.references | C. Debeleac, and S. Nastac, “Stochastic Approaches of Nonlinear Model-Based Simulations for Vibratory Compaction Process,” PAMM, vol. 14 (1), pp. 749-750, 2014. https://doi.org/10.1002/pamm.201410357. | en |
dc.identifier.doi | https://doi.org/10.31649/1997-9266-2022-160-1-103-111 | |