Показати скорочену інформацію

dc.contributor.authorЗур’ян, О. В.uk
dc.contributor.authorЧетверик, Г. О.uk
dc.contributor.authorZurian, O.en
dc.contributor.authorChetveryk, G.en
dc.date.accessioned2024-06-17T20:07:45Z
dc.date.available2024-06-17T20:07:45Z
dc.date.issued2023
dc.identifier.citationЗур’ян О. В. Експериментальні дослідження та моделювання розподілу температури ґрунту на глибині вище нейтрального шару [Текст] / О. В. Зур’ян, Г. О. Четверик // Вісник Вінницького політехнічного інституту. – 2023. – № 3. – С. 34-46.uk
dc.identifier.issn1997–9266
dc.identifier.issn1997–9274
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/42804
dc.description.abstractУ процесі вирішення завдань ґрунтового акумулювання й вилучення теплоти з приповерхневих шарів Землі, виникає потреба отримати інформацію щодо глибини річних змін температури у ґрунті, яка визначає шар земної поверхні, що активно взаємодіє з навколоземною атмосферою. У холодну пору року температура в ній падає, а в теплу — підвищується. Відомо, що ефективність теплонасосної системи залежить як від різниці температур на виході з конденсатора теплового насоса та вході в його випарник, так і стабільністю температури джерела теплової енергії. Температура на вході у випарник теплового насоса визначається температурою ґрунту в місці встановлення колектора теплової енергії. Найбільшої ефективності досягають теплонасосні системи з колекторами, встановленими нижче нейтрального шару, температура якого стала і дорівнює середньорічній температурі ґрунту певної місцевості. На геотермальному полігоні Інституту відновлюваної енергетики НАН України проведено експериментальні дослідження змін температури ґрунту в місцях установлення вертикальних ґрунтових теплообмінників (колекторів). Описана методика проведення досліджень. Наведено характеристики вимірювального обладнання, встановленого на експериментальній установці, і програмного забезпечення, яке використовувалося для архівування і візуалізації даних, отриманих в процесі проведення досліджень. Визначена глибина нейтрального шару та обґрунтовані отримані залежності зміни температури від глибини з урахуванням температури навколишнього середовища та інших факторів екзогенного впливу. Запропоновано математичну модель, яка дає змогу визначати температуру ґрунту Т(z, t) залежно від глибини z ≥ 0 і часу t ≥ 0 за умов, що задано зміну температури поверхні ґрунту або зовнішньо го повітря з часом з урахуванням припущення, що температура ґрунту не залежить від координати (x, y) і теплофізичні властивості ґрунту не змінюються з координатами (x, y, z) з часом. На основі математичної моделі отримані розрахункові дані та побудовані графіки залежності Т(z, t) від глибини за добу та за рік. Визначено глибину нейтрального шару. Як результат виконання науково-дослідної роботи експериментальні дані щодо термічного режиму ґрунту на геотермальному полігоні ІВЕ НАНУ корелюють з результатами, отриманими під час математичного моделювання. Глибина h річних змін температур у ґрунті, яка визначає шар земної поверхні, що активно взаємодіє з атмосферою Землі, в обох випадках знаходиться на позначці 15 м. У ході проведеного дослідження підтверджено закономірності сезонної зміни температур у верхніх шарах Землі. Аналіз отриманих даних показав, що необхідно враховувати зміни температур ґрунту протягом року під час вирішення завдань акумулювання та вилучення теплоти геотермальними теплонасосними системами. Отримані теоретичні та практичні результати дозволяють оптимізувати побудову геотермальних систем. Мають перспективу подальші дослідження впливу геологічних, гідрогеологічних морфологічних та антропогенних умов на девіацію температури нижче нейтрального шару, та їхній вплив на ефективність роботи геотермальних теплонасосних системuk
dc.description.abstractIn the process of solving the problems of soil accumulation and extraction of heat from the near-surface layers of the Earth, there is a need to obtain information on the depth of annual temperature changes in the soil, which determines the layer of the earth’s surface that actively interacts with the near-Earth atmosphere. In the cold season, the temperature in it drops, and in the warm season it rises. It is known that the efficiency of a heat pump system depends both on the temperature difference at the outlet of the heat pump condenser and the inlet to its evaporator, and on the temperature stability of the heat source. The temperature at the inlet to the evaporator of the heat pump is determined by the temperature of the ground at the location of the heat collector. The greatest efficiency is achieved by heat pump systems with collectors in stalled below the neutral layer — the temperature of which is constant and equal to the average annual temperature of the soil in the area. At the geothermal test site of the Institute of Renewable Energy Sources of the National Academy of Sciences of Ukraine, experimental studies of soil temperature changes at the installation site of vertical heat exchangers (collectors) were carried out. The research methodology is described. The characteristics of the measuring equipment installed on the experimental setup and the software used for archiving and visualization of the data obtained during the research are given. The depth of the neutral layer was determined and the obtained dependences of temperature change on depth were substantiated, taking into account the ambient temperature and other factors of exogenous impact. Mathematical model is presented that makes it possible to determine the soil temperature T(z, t) depending on the depth z ≥ 0 and time t ≥ 0, provided that the change in the temperature of the soil surface or outdoor air over time is given, taking into account the assumption that the soil temperature does not depend on the coordinates (x, y) and the thermophysical properties of the soil do not change with the coordinates (x, y, z) over time. Based on the mathematical model, calculated data were obtained and graphs of the dependence of T(z, t) on depth per day and per year were plotted. The depth of the neutral layer is determined. Experimentally obtained as a result of research work on the thermal regime of the soil at the geothermal test site of the Institute of Renewable Energy of the National Academy of Sciences of Ukraine, correlate with the results obtained during mathematical modelling. The depth of annual temperature changes in the soil h, which determines the layer of the earth’s surface that actively interacts with the Earth’s atmosphere, in both cases is at around 15 m. In the course of the study, the patterns of seasonal temperature changes in the upper layers of the Earth were confirmed. The analysis of the data obtained made it possible to conclude that it is necessary to take into account changes in soil temperatures during the year when solving the problems of accumulation and extraction of heat by geothermal heat pump systems. The obtained theoretical and practical results make it possible to improve the construction of geothermal systems. There are prospects for further studies of the influence of geological, hydrogeological morphological and anthropogenic conditions on the temperature deviation below the neutral layer and their influence on the efficiency of geothermal heat pump systems.en
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofВісник Вінницького політехнічного інституту. № 3 : 34-46.uk
dc.relation.urihttps://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2885
dc.subjectвідновлювані джерела енергіїuk
dc.subjectгеотермальна енергетикаuk
dc.subjectтеплота ґрунтуuk
dc.subjectнейтральний шарuk
dc.subjectгеотермальна теплонасосна системаuk
dc.subjectrenewable energy sourcesen
dc.subjectgeothermal energyen
dc.subjectsoil heaten
dc.subjectneutral layeren
dc.subjectgeothermal heat pump systemen
dc.titleЕкспериментальні дослідження та моделювання розподілу температури ґрунту на глибині вище нейтрального шаруuk
dc.title.alternativeExperimental investigations and simulation of soil temperature distribution at a depth above the neutral layeren
dc.typeArticle
dc.identifier.udc504.43; 621.577.2
dc.relation.referencesМ. К. Безродний, І. І. Пуховий, і Д. С. Кутра, Теплові насоси та їх використання, навч. посіб. Київ, Україна: НТУУ «КПІ», 2013, 312 с.uk
dc.relation.referencesА. А. Долінський, і Б. Х. Драганов, «Теплові насоси у системі теплопостачання будівель,» Промислова теплотехніка, т. 30, № 6, с. 71-83, 2008.uk
dc.relation.referencesС. О. Кудря, Відновлювані джерела енергії. ІВЕ НАН України. Київ, Україна, 2020, 354 с.uk
dc.relation.referencesЮ. П. Морозов, Д. М. Чалаєв, Н. В. Ніколаєвська, і М. П. Добровольський, «Оцінка ефективності використання теплового потенціалу довкілля та верхніх шарів землі України,» Відновлювана енергетика, № 4 (63), с. 80-88, 2019. https://doi.org/10.36296/1819-8058.2020.4(63).80-88 .uk
dc.relation.referencesKe Zhu, Philipp Blum, Grant, Klaus-Dieter Balke, and Peter Bayer, “The geothermal potential of urban heat islands,” Environ. Res. Lett., no. 5, pp. 1-6, 2010. http://Ferguson dx.doi.org/10.1088/1748-9326/6/1/019501 .en
dc.relation.referencesЮ. П. Морозов, А. А. Барило, Д. М. Чалаєв, і М. П. Добровольський, «Енергетична ефективність використання перших від поверхні водоносних горизонтів для тепло- і хладопостачання,» Відновлювана енергетика, № 2, с. 70-78, 2019. https://doi.org/10.36296/1819-8058.2019.2(57).70-78 .uk
dc.relation.referencesO. V. Zurian, “Comparison of efficiency of geothermal and hydrothermal energy systems,” XIX International Multidisciplinary Scientific GeoConference SGEM. Renewable Energy Sources and Clean Tech. Varna. Bulgaria, 2019, с. 83-90. https://doi.org/10.5593/sgem2019/4.1/S17.011 .en
dc.relation.referencesЕ. С. Малкін, i Є. О. Кулінко, «Перспективи та аспекти застосування систем теплохолодопостачання, які використовують приповерхневі шари води в якості теплового акумулятора,» Вентиляція, освітлення та теплогазопостачання, № 17, с. 63-69, 2014.uk
dc.relation.referencesO. I. Denisov, “Comparative energy analysis of heat pumps and traditional heating systems,” Tehnicheskaya teplofizika i promyishlennaya teploenergetika. Ukraine. vol. 2, pp. 22-34, 2010.en
dc.relation.referencesО. В. Зур’ян, і В. Г. Олійніченко, «Гідротермальна система отримання теплової енергії, фізичні процеси, ефективність,» Вісник Вінницького політехнічного інституту, № 4, с. 40-46, 2021. https://doi.org/10.31649/1997-9266-2021-157-4-40-46 .uk
dc.relation.referencesЮ. П. Морозов, i А. С. Жохін, «Теплообмін при русі геотермального теплоносія у свердловині,» Відновлювана енергетика, № 4 (71), с. 83-89, 2023. https://doi.org/10.36296/1819-8058.2022.4(71).83-89 .uk
dc.relation.referencesOlga Kordas, and Eugene Nikiforovich, “A phenomenological theory of steady-state vertical geothermal systems: A novel approach https,” Energy, no. 175, pp. 23-35, 2019. https://doi.org/10.1016/j.energy.2019.03.030 .en
dc.relation.referencesS. Yoon, et all, “Evaluation of stainless steel pipe performance as a ground heat exchanger in ground-source heat-pump system,” Energy, 2016; 113:328e37. https://doi.org/10.1016/j.energy.2016.07.057 .en
dc.relation.referencesI. Stylianou, G. Florides, S. Tassou, E. Tsiolakis, and P. Christodoulides, “Methodology for estimating the ground heat absorption rate of Ground Heat Exchangers,” Energy, 2017;127:258e70. https://doi.org/10.1016/j.energy.2017.03.070 .en
dc.relation.referencesА. Пуди, А. Прокопенко, Неоднорідні крайові задачі теплопровідності. Харків, Україна: ХНПУ, 2013, 226 с.uk
dc.relation.referencesX. Liang, E. Wood, and D. Letenmaier, “Modeling ground heat flux in land surface parameterization schemes,” Journal of Geophysical Research, vol. 104, pp. 9581-9600.en
dc.relation.referencesВ. Бондаренко, Рівняння математичної фізики. Київ, Україна: НТУУ «КПІ ім. І. Сікорського», 2018, 100 с.uk
dc.identifier.doihttps://doi.org/10.31649/1997-9266-2023-168-3-34-46


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію