dc.contributor.author | Ванчак, В. С. | uk |
dc.contributor.author | Мельничук, С. І. | uk |
dc.contributor.author | Мануляк, І. З. | uk |
dc.contributor.author | Vanchak, V. | en |
dc.contributor.author | Melnychuk, S. | en |
dc.contributor.author | Manuliak, I. | en |
dc.date.accessioned | 2024-06-19T22:00:26Z | |
dc.date.available | 2024-06-19T22:00:26Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Ванчак В. С. Особливості застосування кореляційних функцій для опрацювання періодичних імпульсних сигналів з гармонічними складовими [Текст] / В. С. Ванчак, С. І. Мельничук, І. З. Мануляк // Вісник Вінницького політехнічного інституту. – 2023. – № 4. – С. 46-53. | uk |
dc.identifier.issn | 1997–9266 | |
dc.identifier.issn | 1997–9274 | |
dc.identifier.uri | https://ir.lib.vntu.edu.ua//handle/123456789/42836 | |
dc.description.abstract | Опрацювання дискретизованих сигналів, зокрема від первинних перетворювачів, є основою більшості низькорівневих процесів в цифрових компонентах комп’ютерних систем. До типових завдань такого опрацювання відносять: виділення інформативних складових сигналів, зменшення впливу шумів та спотворень зумовлених різними чинниками, компенсація нелінійності характеристик сенсорів та апаратних компонентів цифрових систем тощо. В межах статті розглянуто особливості кореляційного опрацювання періодичних імпульсних сигналів з гармонічними складовими, зокрема проведено дослідження щодо ефективності їхнього детектування за наявності адитивного впливу шумів. Розглянуто аспекти формування еталонних фрагментів на основі експериментально отриманих наборів сигналів. Проведені дослідження включають розробку алгоритму виділення типових фрагментів з наборів сигналів, формування еталону на основі відомих математичних інструментів. Подано процеси, алгоритми та аналітичні вирази, що використовувались для формування еталонів, дослідження та оцінки ефективності опрацювання сигналів. Основним критерієм для порівняння ефективності використання різних кореляційних функцій вибрано зміну оцінки відношення енергії сигналу до енергії шуму для вхідних сигналів та сингалів, отриманих
після кореляційного опрацювання. Результати проведених досліджень показують вплив алгоритмів формування еталону та зміни кількості типових зразків на кореляційні функції у разі опрацювання дискретизованих періодичних імпульсних сигналів з гармонічними складовими. | uk |
dc.description.abstract | Discrete signal processing is a core function for most low-level processes in digital elements of computer systems.
Typical task of such processing is allocation of informative components, reduction of the impact of noise and distortions
caused by various factors, and nonlinearity compensation of sensors and hardware components characteristics of digital
computer systems, etc. Within the limits of this article characteristic features of correlation processing of periodic pulse signals with harmonic components was reviewed, experiment regarding the effectiveness of their detection in case of presence of additive effects of noise was carried out . Aspects of reference fragments formation, based on the experimentally obtained set of signals are considered. Conducted research includes development of the algorithm for the allocation of the typical fragments from the set of signals, formation of the template, based on the known mathematical tools. The processes, algorithms, and analytical expressions used for the formation of the reference signals, research and evaluation of the effectiveness of signal processing are provided. Main criterion for the comparison of the efficiency of usage of various correlation functions was selected the change of the assessment of signal energy to noise energy ratio for the input signals and their correlation signals. The research results show the impact of the algorithms of reference signal formation, and changing the number of pre-allocated signal fragments on correlation functions in case processing of discrete periodic pulse signals with harmonic components. | en |
dc.language.iso | uk_UA | uk_UA |
dc.publisher | ВНТУ | uk |
dc.relation.ispartof | Вісник Вінницького політехнічного інституту. № 4 : 46-53. | uk |
dc.relation.uri | https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2907 | |
dc.subject | кореляційні функції | uk |
dc.subject | дискретний сигнал | uk |
dc.subject | періодичний імпульсний сигнал | uk |
dc.subject | опрацювання сигналу | uk |
dc.subject | correlation functions | en |
dc.subject | discrete signal | en |
dc.subject | periodic pulse signal | en |
dc.subject | signal processing | en |
dc.title | Особливості застосування кореляційних функцій для опрацювання періодичних імпульсних сигналів з гармонічними складовими | uk |
dc.title.alternative | Correlation functions application effect on periodic pulse signal with harmonic elements | en |
dc.type | Article | |
dc.identifier.udc | 681.31 | |
dc.relation.references | J. Chen, J. Benesty, Y. Huang, and S. Doclo, “New insights into the noise reduction Wiener filter,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 14, no. 4, pp. 1218-1234, June. 2006. https://doi.org/10.1109/TSA.2005.860851 . | en |
dc.relation.references | H. C. Stronks, J. J. Briaire, and J. H. M. Frijns, “Beam forming and Single-Microphone Noise Reduction: Effects on Signal-to-Noise Ratio and Speech Recognition of Bimodal Cochlear Implant Users,” Trends in Hearing, vol.26, January-December.
2022. https://doi.org/10.1177/23312165221112762 . | en |
dc.relation.references | G. Huang, J. Benesty, T. Long, and J. Chen, “A Family of Maximum SNR Filters for Noise Reduction,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 22, no. 12, pp. 2034-1234, September. 2014.
https://doi.org/10.1109/TASLP.2014.2360643 . | en |
dc.relation.references | J. G. Proakis, and D. G. Manolakis, Digital signal processing. Principles, Algorithms, and Applications. Third edition.
Upper Saddle River, New Jersey: Prentice-Hall, Inc., 1996. | en |
dc.relation.references | C. Lin, C. Huang, W. Yang, A. K. Singh, C. Chuang, and Y. Wang, “Real-Time EEG Signal Enhancement Using Canonical Correlation Analysis and Gaussian Mixture Clustering,” Journal of Healthcare Engineering, vol. 2018, Jan. 2018.
https://doi.org/10.1155/2018/5081258 . | en |
dc.relation.references | M. Zhang, and G. Wei, “An Instantaneous Correlation Coefficient and Simplified Coherent Averaging Method for Single-Channel Foetal ECG Extraction,” Applied Sciences, vol. 10, no. 16: 5634, August. 2020. http://dx.doi.org/10.3390/app10165634 . | en |
dc.relation.references | S. Hong, J. Heo, and K. S. Park, “Signal Quality Index Based on Template Cross-Correlation in Multimodal Biosignal
Chair for Smart Healthcare,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 21, no. 22: 7564, November.
2021. https://doi.org/10.3390/s21227564 . | en |
dc.relation.references | M. Borga, Canonical Correlation: A Tutorial, 2001. [Electronic resource]. Available:
https://www.cs.cmu.edu/~tom/10701_sp11/slides/CCA_tutorial.pdf . Accessed on: July 18, 2023. | en |
dc.relation.references | Н. Г. Ширмовська, І. Б. Албанський, І. Р. Пітух, і О. Л. Кулинин, «Застосування кореляційного та кластерного
аналізу для ідентифікації передаварійних та аварійних станів процесів буріння,» Науковий вісник Івано-Франківського
національного технічного університету нафти і газу, № 3(29), с. 111-118, 2011. | uk |
dc.relation.references | А. І. Сегін, «Перспективи побудови кореляційних моделей в полярній системі координат,» Штучний інтелект,
№ 43, с. 105-114. 2009. | uk |
dc.relation.references | Ю. О. Кулаков, і В. Ю. Куц, «Оцінка співвідношення сигнал/шум в функціонально-орієнтованих системах аналізу циклічних сигналів,» Вісник Вінницького політехнічного інституту, № 57, с. 65-69, 2012. | uk |
dc.identifier.doi | https://doi.org/10.31649/1997-9266-2023-169-4-46-53 | |