Показати скорочену інформацію

dc.contributor.authorБілий, Р. І.uk
dc.contributor.authorBilyy, R.en
dc.date.accessioned2024-07-09T08:39:22Z
dc.date.available2024-07-09T08:39:22Z
dc.date.issued2023
dc.identifier.citationБілий Р. І. Огляд досліджень в напрямку міоелектричного методу керування біонічним протезом [Текст] / Р. І. Білий // Оптико-електронні інформаційно енергетичні технології. – 2023. – Т. 46, № 2. – С. 142–149.uk
dc.identifier.issn1681-7893
dc.identifier.issn2311-2662
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/42976
dc.description.abstractМіоелектричне керування біонічними протезами є важливою галуззю досліджень у сфері реабілітації. Інтуїтивне та інтелектуальне міоелектричне керування може відновити функцію верхньої кінцівки. Однак багато досліджень зараз фокусуються на розвиток різноманітних міоелектричних та біотехнічних методів управління, обмежуючи дослідження складних щоденних завдань маніпулювання протезом, таких як захоплення та відпускання. У статті розглядаються найновіші досягнення у напрямі дослідження управління біонічним протезом. Зокрема, увага приділяється методам визначення намірів руху, класифікації дискретних рухів, оцінки неперервних рухів, однонаканальне управління, управління зворотнім зв'язком та комбіноване управління. Моторні нейрони групують вхідні сигнали від центральної нервової системи, які впливають на м'язи та формуючи моторні одиниці. Сигнал електроміографії коливається в межах ±5000 мкВ з частотою від 6 до 500 Гц, відображає характеристики м'язового скорочення. Залежно від розташування датчиків, сигнали ЕМГ поділяються на внутрішньом'язову та поверхневу електроміографію. Внутрішньом'язова електроміографія надає точне вивчення активації м'язів, але вимагає імплантації датчиків, що може призводити до фізичних проблем. ЕМГ, який знімає сигнал з поверхні шкіри, простіший у використанні і широко використовується в міоелектричних протезів.uk
dc.description.abstractMyoelectric control of bionic prostheses is an important field of research in the field of rehabilitation. Intuitive and intelligent myoelectric control can restore upper limb function. However, much research now focuses on the development of various myoelectrical and biotechnical control methods, limiting research to the complex daily tasks of prosthetic manipulation, such as grasping and releasing. The article examines the latest advances in the research areas of bionic prosthesis management. In particular, attention is paid to the methods of determining movement intentions, classification of discrete movements, estimation of continuous movements, single-channel control, feedback control and combined control. Motor neurons group input signals from the central nervous system that affect muscles and form motor units. The electromyography (EMG) signal, which is obtained by recording motor neuron action potentials, reflects muscle activity. This signal, oscillating within ±5000 μV with a frequency of 6 to 500 Hz, reflects the characteristics of muscle contraction. Depending on the location of the sensors, EMG signals are divided into intramuscular and surface electromyography. Intramuscular electromyography provides an accurate study of muscle activation, but requires the implantation of sensors, which can lead to physical problems. EMG, which captures a signal from the surface of the skin, is easier to use and is widely used in experiments with myoelectric prostheses.en
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofОптико-електронні інформаційно енергетичні технології. № 2 : 142–149.uk
dc.relation.urihttps://oeipt.vntu.edu.ua/index.php/oeipt/article/view/669
dc.subjectміоелектричне керуванняuk
dc.subjectвизначення намірівuk
dc.subjectстратегія управлінняuk
dc.subjectруки протези з розширеною функціональністюuk
dc.subjectзменшення навантаження на користувачаuk
dc.subjectmyoelectric controlen
dc.subjectdetermination of intentionsen
dc.subjectmanagement strategyen
dc.subjectprosthetic hands with extended functionalityen
dc.subjectreducing the load on the useren
dc.titleОгляд досліджень в напрямку міоелектричного методу керування біонічним протезомuk
dc.title.alternativeReview of research towards the myoelectric method of controlling bionic prosthesisen
dc.typeArticle
dc.identifier.udc612.67
dc.relation.referencesBi, L.; Guan, C. A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration. Biomed. Signal Process. Control 2019, 51, 113–127. [CrossRef]en
dc.relation.referencesXiong, D.; Zhang, D.; Zhao, X.; Zhao, Y. Deep learning for EMG-based human-machine interaction: A review. IEEE/CAA J. Autom. Sin. 2021, 8, 512–533. [CrossRef]en
dc.relation.referencesMohebbian, M.R.; Nosouhi, M.; Fazilati, F.; Esfahani, Z.N.; Amiri, G.; Malekifar, N.; Yusefi, F.; Rastegari, M.; Marateb, H.R. A Comprehensive Review of Myoelectric Prosthesis Control. arXiv 2021, arXiv:2112.13192.en
dc.relation.referencesGhaderi, P.; Nosouhi, M.; Jordanic, M.; Marateb, H.R.; Mañanas, M.A.; Farina, D. Kernel density estimation of electromyographic signals and ensemble learning for highly accurate classification of a large set of hand/wrist motions. Front. Neurosci. 2022, 16, 796711. [CrossRef]en
dc.relation.referencesPizzolato, S.; Tagliapietra, L.; Cognolato, M.; Reggiani, M.; Müller, H.; Atzori, M. Comparison of six electromyography acquisition setups on hand movement classification tasks. PloS ONE 2017, 12, e0186132. [CrossRef]en
dc.relation.referencesSri-Iesaranusorn, P.; Chaiyaroj, A.; Buekban, C.; Dumnin, S.; Pongthornseri, R.; Thanawattano, C.; Surangsrirat, D. Classification of 41 hand and wrist movements via surface electromyogram using deep neural network. Front. Bioeng. Biotechnol. 2021, 9, 548357. [CrossRef]en
dc.relation.referencesZhai, X.; Jelfs, B.; Chan, R.H.; Tin, C. Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Front. Neurosci. 2017, 11, 379. [CrossRef] [PubMed]en
dc.relation.referencesKapelner, T.; Vujaklija, I.; Jiang, N.; Negro, F.; Aszmann, O.C.; Principe, J.; Farina, D. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses. J. Neuroeng. Rehabil. 2019, 16, 47. [CrossRef]en
dc.relation.referencesDai, C.; Hu, X. Finger joint angle estimation based on motoneuron discharge activities. IEEE J. Biomed. Health Inform. 2019, 24, 760–767. [CrossRef]en
dc.relation.referencesHe, Z.; Qin, Z.; Koike, Y. Continuous estimation of finger and wrist joint angles using a muscle synergy based musculoskeletal model. Appl. Sci. 2022, 12, 3772. [CrossRef]en
dc.relation.referencesZhang, Q.; Pi, T.; Liu, R.; Xiong, C. Simultaneous and proportional estimation of multijoint kinematics from EMG signals for myocontrol of robotic hands. IEEE/ASME Trans. Mech. 2020, 25, 1953–1960. [CrossRef]en
dc.relation.referencesYang, W.; Yang, D.; Liu, Y.; Liu, H. Decoding simultaneous multi-DOF wrist movements from raw EMG signals using a convolutional neural network. IEEE Trans. Hum. Mach. Syst. 2019, 49, 411–420. [CrossRef]en
dc.relation.referencesHahne, J.M.; Schweisfurth, M.A.; Koppe, M.; Farina, D. Simultaneous control of multiple functions of bionic hand prostheses: Performance and robustness in end users. Sci. Robot. 2018, 3, eaat3630. [CrossRef]en
dc.relation.referencesDi Domenico, D.; Marinelli, A.; Boccardo, N.; Semprini, M.; Lombardi, L.; Canepa, M.; Stedman, S.; Bellingegni, A.D.; Chiappalone, M.; Gruppioni, E.; et al. Hannes prosthesis control based on regression machine learning algorithms. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 5997–6002.en
dc.relation.referencesPiazza, C.; Rossi, M.; Catalano, M.G.; Bicchi, A.; Hargrove, L.J. Evaluation of a simultaneous myoelectric control strategy for a multi-DoF transradial prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2286–2295. [CrossRef]en
dc.relation.referencesLukyanenko, P.; Dewald, H.A.; Lambrecht, J.; Kirsch, R.F.; Tyler, D.J.; Williams, M.R. Stable, simultaneous and proportional 4-DoF prosthetic hand control via synergy-inspired linear interpolation: A case series. J. Neuroeng. Rehabil. 2021, 18, 50 . [CrossRef] [PubMed]en
dc.relation.referencesXu, H.; Chai, G.; Zhang, N.; Gu, G. Restoring finger-specific tactile sensations with a sensory soft neuroprosthetic hand through electrotactile stimulation. Soft Sci. 2022, 2, 19. [CrossRef]en
dc.relation.referencesShehata, A.W.; Scheme, E.J.; Sensinger, J.W. Audible feedback improves internal model strength and performance of myoelectric prosthesis control. Sci. Rep. 2018, 8, 8541. [CrossRef]en
dc.relation.referencesLi, K.; Zhou, Y.; Zhou, D.; Zeng, J.; Fang, Y.; Yang, J.; Liu, H. Electrotactile Feedback-Based Muscle Fatigue Alleviation for Hand Manipulation. Int. J. Humanoid Robot. 2021, 18, 2050024. [CrossRef]en
dc.relation.referencesCha, H.; An, S.; Choi, S.; Yang, S.; Park, S.; Park, S. Study on Intention Recognition and Sensory Feedback: Control of Robotic Prosthetic Hand Through EMG Classification and Proprioceptive Feedback Using Rule-based Haptic Device. IEEE Trans. Haptics 2022, 15, 560–571. [CrossRef]en
dc.relation.referencesMouchoux, J.; Carisi, S.; Dosen, S.; Farina, D.; Schilling, A.F.; Markovic, M. Artificial perception and semiautonomous control in myoelectric hand prostheses increases performance and decreases effort. IEEE Trans. Robot. 2021, 37, 1298–1312. [CrossRef]en
dc.relation.referencesCastro, M.N.; Dosen, S. Continuous Semi-autonomous Prosthesis Control Using a Depth Sensor on the Hand. Front. Neurorobot. 2022, 16, 814973. [CrossRef]en
dc.relation.referencesStarke, J.; Weiner, P.; Crell, M.; Asfour, T. Semi-autonomous control of prosthetic hands based on multimodal sensing, human grasp demonstration and user intention. Robot. Auton. Syst. 2022, 154, 104123. [CrossRef]en
dc.relation.referencesVasile, F.; Maiettini, E.; Pasquale, G.; Florio, A.; Boccardo, N.; Natale, L. Grasp Pre-shape Selection by Synthetic Training: Eye-in-hand Shared Control on the Hannes Prosthesis. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 13112–13119.en
dc.relation.referencesCipriani, C.; Zaccone, F.; Micera, S.; Carrozza, M.C. On the shared control of an EMG-controlled prosthetic hand: Analysis of user–prosthesis interaction. IEEE Trans. Robot. 2008, 24, 170–184. [CrossRef]en
dc.relation.referencesZhuang, K.Z.; Sommer, N.; Mendez, V.; Aryan, S.; Formento, E.; D’Anna, E.; Artoni, F.; Petrini, F.; Granata, G.; Cannaviello, G.; et al. Shared human–robot proportional control of a dexterous myoelectric prosthesis. Nat. Mach. Intell. 2019, 1, 400–411. [CrossRef]en
dc.relation.referencesSeppich, N.; Tacca, N.; Chao, K.Y.; Akim, M.; Hidalgo-Carvajal, D.; Pozo Fortuni´c, E.; Tödtheide, A.; Kühn, J.; Haddadin, S. CyberLimb: A novel robotic prosthesis concept with shared and intuitive control. J. Neuroeng. Rehabil. 2022, 19, 41. [CrossRef]en
dc.relation.referencesMouchoux, J.; Bravo-Cabrera, M.A.; Dosen, S.; Schilling, A.F.; Markovic, M. Impact of shared control modalities on performance and usability of semi-autonomous prostheses. Front. Neurorobot. 2021, 15, 172. [CrossRef] [PubMed]en
dc.identifier.doihttps://doi.org/10.31649/1681-7893-2023-46-2-142-149


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію