dc.contributor.author | Іщенко, В. А. | uk |
dc.contributor.author | Петрук, Р. В. | uk |
dc.contributor.author | Тітов, Т. С. | uk |
dc.contributor.author | Ishchenko, V. A. | en |
dc.contributor.author | Petruk, R. V. | en |
dc.contributor.author | Titov, T. S. | en |
dc.date.accessioned | 2025-04-23T07:19:03Z | |
dc.date.available | 2025-04-23T07:19:03Z | |
dc.date.issued | 2025 | |
dc.identifier.citation | Іщенко В. А., Петрук Р. В., Тітов Т. С. Ресурсний потенціал непридатних пестицидів // Вісник Вінницького політехнічного інституту. 2025. № 1. С. 35–42. | uk |
dc.identifier.issn | 1997-9266 | |
dc.identifier.uri | https://ir.lib.vntu.edu.ua//handle/123456789/46321 | |
dc.description.abstract | Ukraine has accumulated a significant amount of nonserviceable pesticides, in the process of their disposal the possibility of extracting valuable resources should be taken into consideration. At the same time, statistical data on the volume of
non-serviceable pesticides formation are fragmented and incomplete. The total weight of pesticides used in Ukraine can be
estimated at approximately 105 thousands t/year: herbicides — 60 000 t/year, fungicides — 17 000 t/year, insecticides —
10 000 t/year, others — 18 000 t/year. Among the pesticides used in Ukraine, the largest share is accounted for by those
based on the active substance acetochlor (13 % of all active substances). The authors estimate that about 4—5 tons of
pesticides end up in waste. Besides, some unknown amount of waste pesticides is formed in households. The article analyzes two main ways of resource recovery from waste pesticides: obtaining a useful product through chemical/ physicochemical transformations; using the products of pesticide incineration. Chemical transformations using active oxidation,
photolysis, etc. allow obtaining valuable chemical products, for example, cyanuric acid (from nitrogen-containing pesticides),
solvents (acetone, ethyl alcohol, ethyl acetate, isopropyl alcohol), chemical raw materials for the fertilizers production (from
phosphate-containing pesticides). Some waste pesticides can be used as plant growth stimulants. The products of chemical
decomposition of acetochlor, dimethachlor, propisochlor and other similar pesticides may have further application, for example, for alcohols production. However, the use of chemical methods requires the ability to accurately identify waste pesticides. Those pesticides accumulated over the past years are hardly possible to identify and the only way is the incineration.
This method produces ash that can be used for road construction or as a foundation filler. This method is simpler, more
affordable, and does not require pesticide separation. | en |
dc.description.abstract | В Україні накопичена значна кількість непридатних пестицидів, під час утилізації яких необхідно враховувати можливість вилучення з них корисних складових. При цьому, статистичні дані щодо обсягів утворення непридатних пестицидів є фрагментарними і неповними. Загальний обсяг пестицидів, які використовуються в Україні, можна приблизно оцінити у 105 тис. т/рік: гербіциди — 60 тис. т/рік, фунгіциди — 17 тис. т/рік, інсектициди — 10 тис. т/рік, інші — 18 тис. т/рік. Серед пестицидів, які використовуються в Україні, найбільша частка припадає на препарати на основі діючої речовини ацетохлору (13% серед усіх діючих речовин). Авторами оцінено, що близько 4—5 тонн пестицидів потрапляє у відходи. До цього, деяка невідома кількість непридатних пестицидів утворюється у домогосподарствах. У статті проаналізовані два основних напрямки отримання ресурсів з непридатних пестицидів: отримання корисного продукту шляхом хімічних/фізико-хімічних перетворень; використання продуктів спалювання пестицидів. Хімічні перетворення з використанням методів активного окиснення, фотолізу тощо дозволяють отримати цінні хімічні продукти, до прикладу: ціанурову кислоту (з азотвмісних пестицидів), розчинники (ацетон, спирт етиловий, етилацетат, спирт ізопропіловий), хімічну сировину для виробництва добрив (з фосфатвмісних пестицидів). Деякі непридатні пестициди можуть бути використані як стимулятори росту рослин. Продукти хімічного розкладання ацетохлору, диметахлору, пропізохлору та інших подібних пестицидів можуть мати подальше застосування, наприклад, для отримання спиртів. Проте використання хімічних методів для утилізації пестицидів потребує можливості точної ідентифікації непридатних пестицидів. Ті пестициди, які накопичені за минулі роки, фактично неможливо ідентифікувати і сьогодні єдиним методом їхньої утилізації є спалювання. При цьому утворюється зола, яка може бути використана для дорожнього будівництва або як наповнювач для фундаментів. Цей метод є простішим, доступнішим і немає вимог щодо розділення пестицидів. | uk |
dc.language.iso | uk_UA | uk_UA |
dc.publisher | ВНТУ | uk |
dc.relation.ispartof | Вісник Вінницького політехнічного інституту. 2025. № 1 : 35–42. | uk |
dc.relation.uri | https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/3162 | |
dc.subject | непридатні пестициди | uk |
dc.subject | утилізація | uk |
dc.subject | ресурси | uk |
dc.subject | хімічне перетворення | uk |
dc.subject | спалювання | uk |
dc.subject | waste pesticides | en |
dc.subject | recycling | en |
dc.subject | resources | en |
dc.subject | chemical transformation | en |
dc.subject | incineration | en |
dc.title | Ресурсний потенціал непридатних пестицидів | uk |
dc.type | Article, professional native edition | |
dc.type | Article | |
dc.identifier.udc | 504.504 | |
dc.relation.references | FAOSTAT pesticides trade dataset. [Electronic resource]. Available: http://www.fao.org/faostat/en/#data/RT . | en |
dc.relation.references | S. Sabzevari, and J. Hofman, “A worldwide review of currently used pesticides' monitoring in agricultural soils,” Science
of the Total Environment, no. 812, pp. 152344, 2022 | en |
dc.relation.references | P. Nayak, and H. Solanki, “Pesticides and Indian agriculture — a review,” International Journal of Research –
GRANTHAALAYAH, no. 9(5), pp. 250-263, 2021. | en |
dc.relation.references | І. В. Ткаченко, А. М. Антоненко, В. Г. Бардов, і С. Т. Омельчук, «Порівняльна гігієнічна оцінка та аналіз асортименту і обсягів застосування пестицидів в різних країнах світу,» Медична наука України, №17 (4), с. 95-101, 2021. | uk |
dc.relation.references | Міністерство захисту довкілля та природних ресурсів України, Національна доповідь про стан навколишнього природного середовища в Україні у 2020 році. [Електронний ресурс]. Режим доступу:
https://mepr.gov.ua/files/docs/Zvit/2022/Національна %20Доповідь %202020 %20(2).pdf . | uk |
dc.relation.references | A. P. Bhat, and P. R. Gogate, “Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides,” Journal of Hazardous Materials, no. 403, pp. 123657, 2021. | en |
dc.relation.references | С. В. Станкевич, Ринок пестицидів України, моногр. Харків, Україна: вид-во Іванченка І. С., 2020, 175 с. | uk |
dc.relation.references | United Nations Comtrade Database. [Electronic resource]. Available: https://comtradeplus.un.org/ . | en |
dc.relation.references | Державна служба статистики України, Утворення відходів за класифікаційними угрупованнями державного
класифікатора відходів. [Електронний ресурс]. Режим доступу:
https://www.ukrstat.gov.ua/operativ/operativ2018/ns/uv_zaklass/uv_zaklass_19ue.xls . | uk |
dc.relation.references | В. А. Іщенко, «Оцінка потоків небезпечних побутових відходів в Україні,» Вісник Вінницького політехнічного
інституту, № 4, с. 13-18, 2022. https://doi.org/10.31649/1997-9266-2022-163-4-13-18 . | uk |
dc.relation.references | Державна служба статистики України. Використання добрив і пестицидів під урожай сільськогосподарських культур. [Електронний ресурс]. Режим доступу: https://ukrstat.gov.ua/operativ/operativ2018/sg/vmod/arch_vmodsg_u.htm . | uk |
dc.relation.references | K. Y. Foo, and B. H. Hameed, “Detoxification of pesticide waste via activated carbon adsorption process,” Journal of
hazardous materials, no. 175(1-3), pp. 1-11, 2010. | en |
dc.relation.references | M. H. Pérez, et al., “Degradation of pesticides in water using solar advanced oxidation processes,” Applied Catalysis B:
Environmental, no. 64(3-4), pp. 272-281, 2006. | en |
dc.relation.references | E. Chmielewska, “Commonly Used Disposing Methods for Waste Pesticides,” Current Green Chemistry, no. 8(2),
pp. 94-98, 2021. | en |
dc.relation.references | H. Liu, et al., “Characterization of acetochlor degradation and role of microbial communities in biofilters with varied
substrate types,” Chemical Engineering Journal, no. 467, pp. 143417, 2023. | en |
dc.relation.references | J. Liu, X. Zhang, J. Xu, J. Qiu, J. Zhu, H. Cao, and J. He, “Anaerobic biodegradation of acetochlor by acclimated sludge
and its anaerobic catabolic pathway,” Science of the Total Environment, 748, pp. 141122, 2020. | en |
dc.relation.references | W.-J. Chen, et al., “Current insights into environmental acetochlor toxicity and remediation strategies,” Environmental
Geochemistry and Health, no. 46 (9), pp. 356, 2024. | en |
dc.relation.references | A. Ravishankar, J. R. Cumming, and J. E. G. Gallagher, “Mitochondrial metabolism is central for response and resistance of
saccharomyces cerevisiae to exposure to a glyphosate-based herbicide,” Environmental Pollution, no. 262, pp. 114359, 2020. | en |
dc.relation.references | N. Swanson, J. Hoy, and S. Seneff, “Evidence that glyphosate is a causative agent in chronic sub-clinical metabolic acidosis
and mitochondrial dysfunction. International,” Journal of Human Nutrition and Functional Medicine, no. 4 (9), pp. 1-21, 2016. | en |
dc.relation.references | L. Qi, Y.-M. Dong, H. Chao, P. Zhao, S.-L. Ma, and G. Li, “Glyphosate based-herbicide disrupts energy metabolism and
activates inflammatory response through oxidative stress in mice liver,” Chemosphere, no. 315, pp. 137751, 2023. | en |
dc.relation.references | Y. Liu, et al., “Herbicide propisochlor exposure induces intestinal barrier impairment, microbiota dysbiosis and Gut Pyroptosis,” Ecotoxicology and Environmental Safety, no. 262, pp. 115154, 2023. | en |
dc.relation.references | S.-F. Chen, W.-J. Chen, Y. Huang, M. Wei, and C. Chang, “Insights into the metabolic pathways and biodegradation
mechanisms of chloroacetamide herbicides,” Environmental Research, no. 229, pp. 115918, 2023 | en |
dc.relation.references | C. Fujino, et al., “Activation of PXR, CAR and PPARα by pyrethroid pesticides and the effect of metabolism by rat liver
microsomes,” Heliyon, no. 5 (9), pp. e02466, 2019. | en |
dc.relation.references | Y. Liu, et al., “Construction and characterization of a class-specific single-chain variable fragment against pyrethroid
metabolites,” Applied Microbiology and Biotechnology, no. 104, pp. 7345-7354, 2020 | en |
dc.relation.references | N. Papadopoulos, E. Gikas, G. Zalidis, and A. Tsarbopoulos, “Simultaneous Determination of Herbicide Terbuthylazine
and Its Major Hydroxy and Dealkylated Metabolites in Typha latifolia L. Wetland Plant Using SPE and HPLC-DAD,” Journal of
Liquid Chromatography & Related Technologies, no. 32, pp. 2975-2992, 2009. | en |
dc.relation.references | A. F. Hernandez‐Jerez, et al., “Scientific opinion on the setting of health‐based reference values for metabolites of the
active substance terbuthylazine,” EFSA Journal, no. 17 (6), pp. e05712, 2019. | en |
dc.relation.references | Q. Ge, et al., “Deposition, dissipation, and minimum effective dosage of the fungicide carbendazim in the pepper‐field
ecosystem,” Pest Management Science, no. 76(3), pp. 907-916, 2019. | en |
dc.relation.references | Z. Bao, D. Wang, Y. Zhao, T. Luo, G. Yang, and Y. Jin, “Insights into enhanced toxic effects by the binary mixture of
Carbendazim and procymidone on hepatic lipid metabolism in mice,” Science of the Total Environment, no. 882, pp. 163648,
2023. | en |
dc.relation.references | K. Goyal, A. Sharma, R. Arya, R. Sharma, G. Gupta, and A. Sharma, “Double edge Sword Behavior of Carbendazim: A Potent
Fungicide With Anti-Cancer Therapeutic Properties,” Anti-Cancer Agents in Medicinal Chemistry, no. 18 (1), pp. 38-45, 2018. | en |
dc.relation.references | Z. Long, et al., “Characterization of a novel carbendazim-degrading strain Rhodococcus SP. CX-1 revealed by genome
and transcriptome analyses,” Science of the Total Environment, no. 754, pp. 142137, 2021. | en |
dc.relation.references | T. Zhou, T. Guo, Y. Wang, F. Wang, and M. Zhang. “Carbendazim: Ecological risks, toxicities, degradation pathways and potential risks to human health,” Chemosphere, no. 314, pp. 137723, 2023. | en |
dc.relation.references | A. R. Jupp, S. Beijer, G. C. Narain, W. Schipper, and J. C. Slootweg, “Phosphorus recovery and recycling-closing the
loopб” Chemical Society Reviews, no. 50 (1), pp. 87-101, 2021. | en |
dc.relation.references | S. Zhang, C. Yao, X. Feng, and M. Yang, “Repeated use of MgNH4PO4· 6H2O residues for ammonium removal by acid dipping,” Desalination, no. 170 (1), pp. 27-32, 2004. | en |
dc.relation.references | О. В. Хареба, «Вплив комплексного мікродобрива «міком» на врожайність та якість огірка за вирощування в
плівкових теплиця,» Наукові доповіді НУБіП України, № 2, c. 124-130, 2011. | uk |
dc.relation.references | Р. В. Петрук, Наукове обґрунтування оптимальних форм інтегрованого управління екологічною безпекою непридатних пестицидів та пестицидвмісних відходів, моногр. Вінниця, Україна : ВНТУ, 2023, 247 с. [Електронний ресурс]. Режим
доступу: https://press.vntu.edu.ua/index.php/vntu/catalog/book/747 . | uk |
dc.relation.references | Екологічні аспекти термічного знешкодження непридатних отрутохімікатів, моногр., В. Г. Петрук, Ред. Вінниця, Україна: Універсум-Вінниця, 2006, 254 с. | uk |
dc.identifier.doi | https://doi.org/10.31649/1997-9266-2025-178-1-35-42 | |