Показати скорочену інформацію

dc.contributor.authorЗакусило, С. А.uk
dc.contributor.authorБерезниченко, В. О.uk
dc.contributor.authorZakusilo, S. A.en
dc.contributor.authorBereznychenko, V. O.en
dc.date.accessioned2025-07-21T06:53:41Z
dc.date.available2025-07-21T06:53:41Z
dc.date.issued2024
dc.identifier.citationЗакусило С. А., Березниченко В. О. Аналіз впливу перекосу електродів ємнісного сенсора биття системи моніторингу стану гідрогенераторів на його функцію перетворення // Вісник Вінницького політехнічного інституту. 2024. № 4. С. 7–14.uk
dc.identifier.issn1997-9274
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/46871
dc.description.abstractIn the paper the impact of the skewness of the surface where the electrodes (sensitive the elements) of the runout capacitive sensor are located on its conversion function is considered. The sensor is designed for the usage in control and diagnostics systems of the actual technical condition of high-power hydro generators. During the assembly runout capacitive sensors may be installed with deviations relatively the normal to the surface, which is controlled, or as a result of technological errors the surface of the sensors may be located under certain angle to the shaft axis, also deviations may occur as a result of vibration or other impacts in the process of operation. It is noted that the response function of the runout capacitive sensor is greatly influenced by the deviation of the planes of electrodes location relatively the axis of the shaft surface. To assess the effect of influence of the skew error on the runout capacitive sensors response function stability, a calculation scheme was used and simulations were conducted in the Comsol Multiphysics environment. The research conducted enabled to obtain response functions for runout capacitive sensors with plane-parallel electrodes at different skewness angles of the surface of the electrodes location. Results of the experimental studies proved the correctness of the analytical propositions and data, obtained as a result of computer simulation The results of the analysis of the obtained response functions enabled to determine that the skewness influences the value of the informative component of the capacitance of the output value of response function of the runout capacitive sensors informative capacity of the output value of runout capacitive sensors and leads to the shift of the graph of the response function on additive component.en
dc.description.abstractДосліджено вплив перекосу поверхні, на якій розташовані електроди (чутливі елементи) ємнісного сенсора биття, на його функцію перетворення. Сенсор биття призначений для використання в системах контролю та діагностики фактичного технічного стану потужних гідрогенераторів. Показано, що під час монтажу сенсори биття можуть бути встановлені з відхиленнями відносно нормалі до поверхні, яка контролюється, або в наслідок технологічних похибок поверхня сенсорів може бути розташована під деяким кутом відносно осі сенсора, також відuk
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofВісник Вінницького політехнічного інституту. № 4 : 7-14.uk
dc.relation.urihttps://visnyk.vntu.edu.ua/index.php/visnyk/article/view/3060
dc.subjectгенераторuk
dc.subjectємнісний сенсорuk
dc.subjectфункція перетворенняuk
dc.subjectсистема моніторингуuk
dc.subjectgeneratoren
dc.subjectrunouten
dc.subjectcapacitive sensoren
dc.subjectskewingen
dc.subjectresponse functionen
dc.subjectmonitoring systemen
dc.titleАналіз впливу перекосу електродів ємнісного сенсора биття системи моніторингу стану гідрогенераторів на його функцію перетворенняuk
dc.title.alternativeAnalysis of the Skewness of the Electrodes of Runout Capacitive Sensor of Hydro Generators Condition Monitoring System Impact on its Conversion Functionen
dc.typeArticle, professional native edition
dc.typeArticle
dc.identifier.udc621.3
dc.relation.referencesV. I. Smirnov, Methods and means of functional diagnostics and control of technological processes based on electromagnetic sensors, Ulyanovsk State Technical University, 2001, p. 190.en
dc.relation.referencesL. Zhaohui, Y. Ai, and S. Huixuan, “Optimal maintenance information system of gezhouba hydro power plant,” in Proc. of the 2007 IEEE power engineering society general meeting, pp.1-5, Tampa, FL, USA, 23 July 2007, https://doi.org/10.1109/PES.2007.385722en
dc.relation.referencesCondition Management System for Hydro-Turbine Generators. An Application Guide. [Electronic resource]. Available: http://www.fr-eps.com/docs/Bently-Nevada-CMS-HydroTurbine-brochureEN.pdfen
dc.relation.referencesCondition monitoring solutions for hydroelectric power generation. [Electronic resource]. Available: https://dam.bakerhughesds.com/m/65bbcaf2f9e27e6a/n original/BHCS13978Hydro_Brochure_R2-pdf.pdfen
dc.relation.referencesBently Nevada 3500 Series Machinery Monitoring System. [Electronic resource]. Available: https://www.instrumart.com/productsets/425/bently-nevada-3500-series-machinery-monitoring-system .en
dc.relation.referencesBently Nevada 3500 Vibration Monitoring System. [Electronic resource]. Available: https://www.ge.com/content/dam/gepower-pgdp/global/en_US/documents/technical/upgradedocuments/GEA32070ABentlyNevada3500-US-R1-LR.pdfen
dc.relation.references2300 Vibration Monitors. Product Datasheet.Bently Nevada Asset Condition Monitoring. [Electronic resource]. Available: https://www.instrumart.com/assets/2300-Datasheet.pdf .en
dc.relation.referencesBently Nevada 2300 Vibration Monitor Series. [Electronic resource]. Available: http://www.shurhay.com/pdf/2300-factsheet-gea31447d.pdf .en
dc.relation.referencesR. B. Randall, Vibration signals from rotating and reciprocating machines. Vibration-based condition monitoring. New York, 289 p., 2011en
dc.relation.referencesISO 20816-1:2016. Mechanical vibration. Measurement and evaluation of machine vibration. Part 1: General guidelines ISO79. Released: 2016-11-30. ISO/TC 108/SC 2 Measurement and evaluation of mechanical vibration and shock as applied to machines, vehicles and structures, 2016.en
dc.relation.referencesC. Trivedi, M. J. Cervantes, and B. K. Gandhi, “Investigation of a high head francis turbine at runaway operating conditions,” Energies, vol. 9, p.149, 2016. https://doi.org/10.3390/en9030149 .en
dc.relation.referencesG. C. B. Junior, R. D. Machado, A. C. Neto, and M. F. Martini, “Experimental aspects in the vibration-based condition monitoring of large hydrogenerators,” International Journal of Rotating Machinery, vol. 1, 14 p, 2017. https://doi.org/10.1155/2017/1805051 .en
dc.relation.referencesA. S. Levytskyi, G. M. Fedorenko, and O. P. Gruboi, “Control of the state of powerful hydro and turbogenerators by means of capacitive measuring instruments of mechanical defects parameters,” Kyiv: IED NANU, 2011, 242 p.en
dc.relation.referencesV. I. Bryzgalov, and L. A. Gordon, Hydropower plant. Krasnojarsk: IPC KGTU, 2002en
dc.relation.referencesB. A. Alekseev, Determining the status (diagnostics) of large hydro generators. ENAS, 2002, 144 pen
dc.relation.referencesA. V. Beloglazov, Development of adaptive tools for fault diagnostics and strategies for servicing hydrogenerator. Novosibirsk, 2011en
dc.relation.referencesISO 7919-5:2005. Mechanical vibration. Evaluation of machine vibration by measurements on rotating shafts . Part 5: Machine sets in hydraulic power generating and pumping plants. Released: 2005-04. ISO/TC 108/SC 2 Measurement and evaluation of mechanical vibration and shock as applied to machines, vehicles and structures, 2005.en
dc.relation.referencesISO 13381-1:2015. Condition monitoring and diagnostics of machines. Prognosics. Part 1: General guidelines. Released: 2015-09. ISO/TC 108/SC 5 Condition monitoring and diagnostics of machine systems, 2015.en
dc.relation.referencesK. Zhuang, S. Huang, X. Fu, and L. Chen, “Nonlinear hydraulic vibration modeling and dynamic analysis of hydroturbine generator unit with multiple faults,” Energies, vol. 15, p. 3386, 2022. https://doi.org/ 10.3390/en15093386 .en
dc.relation.referencesI. Zaitsev, and V. Bereznychenko, “Condition monitoring and fault diagnosis systems of power generators with noncontact shaft runout electrocapacitive transducer,” in 2023 IEEE KhPI Week on Advanced Technology (KhPIWeek-2023), 7-10 Oct. 2024, Kharkiv, Ukraine. pp. 1-6, 10.1109/KhPIWeek61412.2023.10311584 .en
dc.relation.referencesR. J. Muhammad, and S. A. R. Khaled, “Vibration measurement of a rotating shaft using electrostatic sensor,” Int. J. Recent Technol. Eng., vol. 10, pp. 97-105, 2021.en
dc.relation.referencesI. Zaitsev, A. Levytskyi, and V. Bereznychenko “Hybrid diagnostics systems for power generators faults: systems design principle and shaft run-out sensors,” in Power systems research and operation: Selected problems, Kyrylenko O., Zharkin A. and other. Eds., Springer, 2021, pp. 71-98. https://doi.org/10.1007/978-3-030-82926-1_4 .en
dc.relation.referencesV. L. Gerike, Monitoring and diagnostics of the technical condition of machine units, KuzGTU, 1999, 230 pen
dc.relation.referencesI. A. Glebov, V. V. Dombrovsky, A. A. Dukshtau, A. S. Paper, G. B. Pinsky, and E. V. Shkolnik, Hydrogenerators, Energoizdat, 368 p., 1982.en
dc.relation.referencesF. Rolim, A. Tetreault, and R. Marshall, “Air gap monitoring system key element to correctly diagnose generator problems,” in Proc. II ENAM, Belém city, Para state, Brazil, 9 p., 2004.en
dc.relation.referencesА. С. Левицький, Є. О. Зайцев, В. О. Березниченко, «Відносна та абсолютна радіальна вібрація вала вертикального гідроагрегата,» Гідроенергетика України, № 3-4, с. 36-39, 2019.uk
dc.relation.referencesI. Zaitsev, A. Levytskyi, and V. Bereznychenko, “Analysis of the technological production defects influence on response function of shaft run-out sensor for generator fault diagnosis system,” in 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2021, pp. 435-438, https://doi.org/10.1109/UKRCON53503.2021.9575886 .en
dc.relation.referencesI. Zaitsev, “Shaft run-out optical remote sensing system for large generator fault diagnosis, ” in Ukraine International conference on electrical and computer engineering (UKRCON-2021), 26-28 August, 2019 Lviv, Ukraine. pp. 339-342. https://doi.org/ 10.1109/UKRCON53503.2021.9575432 .en
dc.relation.referencesI. O. Zaitsev, A. S. Levytskyi, A. I. Novik, V. O. Bereznychenko, and A. M. Smyrnova, “Research of a capacitive distance sensor to grounded surface,” Telecommunications and Radio Engineering, vol. 78(2), pp. 173-180, 2019, https://doi.org/10.1615/TelecomRadEng.v78.i2.80 .en
dc.identifier.doihttps://doi.org/10.31649/1997-9266-2024-175-4-7-14


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію