• English
    • українська
  • українська 
    • English
    • українська
  • Увійти
Дивитися документ 
  • Головна
  • Науково-технічна бібліотека
  • Публікації співробітників бібліотеки
  • JetIQ
  • Дивитися документ
  • Головна
  • Науково-технічна бібліотека
  • Публікації співробітників бібліотеки
  • JetIQ
  • Дивитися документ
Сайт інституційного репозитарію ВНТУ містить роботи, матеріали та файли, які були розміщені докторантами, аспірантами та студентами Вінницького Національного Технічного Університету. Для розширення функцій сайту рекомендується увімкнути JavaScript.

Нейромережевий ансамбль для прогнозування часових рядів на основі Prophet та LSTM

Автор
Лосенко, А. В.
Козачко, О. М.
Варчук, І. В.
Losenko, A. V.
Kozachko, O. M.
Varchuk, I. V.
Дата
2024
Metadata
Показати повну інформацію
Collections
  • JetIQ [268]
Анотації
У статті розглядається застосування моделей машинного навчання для оптимізації прогнозування часових рядів, що є актуальним завданням у багатьох галузях, включаючи охорону здоров'я. Особлива увага приділяється використанню моделі Prophet у поєднанні з ансамблевими методами, такими як моделі машинного навчання на основі нейронних мереж, зокрема LSTM, GRU, а також інших рекурентних нейронних мереж, для створення високоточного прогнозування кількості хворих на COVID-19 в Україні протягом 2020 – 2022 років. Прогнозування часових рядів є важливим інструментом для аналізу та моделювання тенденцій, які мають складну природу залежностей. Наприклад, у сфері охорони здоров'я прогнозування кількості хворих дозволяє заздалегідь оцінити навантаження на систему охорони здоров'я та планувати відповідні ресурси. У цьому контексті використання моделей, які здатні враховувати як короткострокові, так і довгострокові тренди, є критично важливим. Prophet, відомий своєю здатністю точно моделювати сезонні компоненти, доповнюється потужністю LSTM для обробки нелінійних залежностей, що забезпечує значне покращення точності прогнозів. Додатково у статті розглядається можливість використання гібридних підходів, які комбінують результати традиційних методів і моделей глибокого навчання. Такий підхід дозволяє враховувати складні закономірності у часових рядах, які не завжди можуть бути повністю враховані однією моделлю. Гібридні підходи забезпечують багаторівневий аналіз даних, де статистичні методи, такі як Prophet, моделюють основні тренди та сезонність, тоді як глибокі нейронні мережі, наприклад LSTM, обробляють нелінійні та короткострокові залежності. Результати дослідження можуть бути використані для аналізу інших часових рядів, що робить запропонований підхід універсальним та перспективним для подальшого розвитку.
URI:
https://ir.lib.vntu.edu.ua//handle/123456789/50177
Відкрити
189239.pdf (937.1Kb)

Інституційний репозиторій

ГоловнаПошукДовідкаКонтактиПро нас

Ресурси

JetIQСайт бібліотекиСайт університетаЕлектронний каталог ВНТУ

Перегляд

Всі архівиСпільноти та колекціїЗа датою публікаціїАвторамиНазвамиТемамиТипВидавництвоМоваУДКISSNВидання, що міститьDOIЦя колекціяЗа датою публікаціїАвторамиНазвамиТемамиТипВидавництвоМоваУДКISSNВидання, що міститьDOI

Мій обліковий запис

ВхідРеєстрація

Статистика

View Usage Statistics

ISSN 2413-6360 | Головна | Відправити відгук | Довідка | Контакти | Про нас
© 2016 Vinnytsia National Technical University | Extra plugins code by VNTU Linuxoids | Powered by DSpace
Працює за підтримки 
НТБ ВНТУ