| dc.contributor.author | Павлюк, О. М. | uk |
| dc.contributor.author | Медиковський, М. О. | uk |
| dc.contributor.author | Міщук, М. В. | uk |
| dc.contributor.author | Заболотна, А. О. | uk |
| dc.contributor.author | Pavliuk, O. M. | en |
| dc.contributor.author | Medykovskyy, M. O. | en |
| dc.contributor.author | Mishchuk, M. V. | en |
| dc.contributor.author | Zabolotna, A. O. | en |
| dc.date.accessioned | 2026-01-13T09:35:40Z | |
| dc.date.available | 2026-01-13T09:35:40Z | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Павлюк О. М., Медиковський М. О., Міщук М. В., Заболотна А. О. Метод визначення оптимального шляху мобільної роботизованої платформи в умовах обмежених ресурсів // Вісник Вінницького політехнічного інституту. 2025. № 1. С. 7-17. URI: https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/3159. | uk |
| dc.identifier.issn | 1997-9274 | |
| dc.identifier.uri | https://ir.lib.vntu.edu.ua//handle/123456789/50430 | |
| dc.description.abstract | With the transition to Industry 5.0, mobile robotic platforms (MRPs) have become an important element of industrial automation, replacing outdated conveyors. They optimize the transportation of materials at industrial enterprises, integrate with control systems and adapt to changing conditions. The authors focus on their navigation in dynamic environments, avoiding obstacles when interacting with people in conditions of limited resources. The paper analyzes the limitations of existing approaches to route planning for MRPs, in particular the A*, D*, DLite, M algorithms in dynamic environments. Special attention is paid to the optimization of algorithms using federated learning, introducing artificial intelligence to increase productivity.
The authors proposed a method for determining the shortest route for AGV, which is based on classical algorithms for finding the optimal route in conditions of static and dynamic obstacles, taking into account limited resources, in particular the remaining battery charge and the time to complete the task. Stationary obstacles include walls and fixed workplaces of personnel, and dynamic obstacles are classified as living (industrial personnel) and inanimate (other MRPs or unpredictable objects such as boxes). Federated learning is used to predict the voltage drop of MRP batteries taking into account the individual characteristics of the platforms. The developed method involves dividing the route map into a uniform grid, constructing obstacle matrices, predicting battery voltage and calculating the optimal route using the A*, D*, DLite, M algorithms. The effectiveness of the method is evaluated by the following parameters: route length, number of cells passed, execution time, remaining battery charge. The results of the method are presented on the example of the AGV Formica 1 route, AIUT, Gliwice, Poland.
The D* algorithm underlying the developed method is the most efficient in terms of execution time, number of cells passed, and battery conservation, which makes it optimal for dynamic conditions. The DLite and M algorithms also show good performance in static conditions, with lower resource consumption. A*, although it finds the optimal path, is the slowest and less efficient under limited resources. Thus, for dynamic environments, D* is the best choice, while DLite and M are good options for stable conditions. | en |
| dc.description.abstract | З переходом до Індустрії 5.0 мобільні роботизовані платформи (МРП) стали важливим елементом автоматизації промислових підприємств, замінивши застарілі конвеєри. Вони оптимізують транспортування матеріалів на промислових підприємствах, інтегруються з системами управління та адаптуються до змінних умов. Основну увагу автори приділили навігації МРП в динамічних середовищах, уникаючи перешкод при взаємодії з людьми в умовах обмежених ресурсів. У роботі проаналізовано обмеження наявних підходів до планування маршрутів для МРП, зокрема алгоритми A*, D*, DLite, M в умовах динамічних середовищ. Особливу увагу приділено оптимізації алгоритмів із застосуванням федеративного навчання, впроваджуючи штучний інтелект для підвищення продуктивності.
Авторами запропоновано метод визначення найкоротшого маршруту для МРП, в основу якого закладені класичні алгоритми знаходження оптимального маршруту в умовах статичних і динамічних перешкод з урахуванням обмежених ресурсів, зокрема залишкового заряду акумуляторної батареї та часу виконання поставленого завдання. Стаціонарні перешкоди — це стіни та нерухомі робочі місця персоналу, а динамічні — класифіковані як живі (промисловий персонал) і неживі (інші МРП чи непередбачувані об’єкти, такі як коробки). Застосовано федеративне навчання для прогнозування спаду напруги акумуляторних батарей МРП з урахуванням індивідуальних характеристик платформ. Розроблений метод передбачає поділ карти маршруту на рівномірну сітку, побудову матриць перешкод, прогнозування напруги батареї та визначення оптимального маршруту за допомогою алгоритмів A*, D*, DLite, M. Ефективність методу оцінено за такими параметрами: довжина маршруту, кількість пройдених комірок, час виконання, залишковий заряд батареї. Подано результати роботи методу на прикладі маршруту МРП Formica 1, AIUT, Глівіце, польща.
Алгоритм D*, закладений в основу розробленого методу, є найефективнішим за часом виконання, кількістю пройдених комірок і збереженням заряду батареї, завдяки чому він є оптимальним для динамічних умов. Алгоритми DLite і M також показують хорошу продуктивність в статичних умовах, з меншими витратами ресурсів. Алгоритми A* хоча і знаходить оптимальний шлях, є найповільнішим і менш ефективним за обмежених ресурсів. Таким чином, для динамічних середовищ найкращим вибором є алгоритм D*, а хорошими варіантами для стабільних умов є алгоритми DLite і M. | uk |
| dc.language.iso | uk_UA | uk_UA |
| dc.publisher | ВНТУ | uk |
| dc.relation.ispartof | Вісник Вінницького політехнічного інституту. № 1 : 7-17. | uk |
| dc.relation.uri | https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/3159 | |
| dc.subject | мобільні роботизовані платформи | uk |
| dc.subject | найкоротший маршрут | uk |
| dc.subject | обмежені ресурси | uk |
| dc.subject | динамічні перешкоди | uk |
| dc.subject | федеративне навчання | uk |
| dc.subject | mobile robotic platforms | en |
| dc.subject | shortest path | en |
| dc.subject | limited resources | en |
| dc.subject | dynamic obstacles | en |
| dc.subject | federated learning | en |
| dc.title | Метод визначення оптимального шляху мобільної роботизованої платформи в умовах обмежених ресурсів | uk |
| dc.title.alternative | Method of Determination of the Shortest Path of Mobile Robotic Platform in the Conditions of Limited Resources | en |
| dc.type | Article, professional native edition | |
| dc.type | Article | |
| dc.identifier.udc | 004.[6+8] | |
| dc.relation.references | Cai Zhengying, Du Jingshu, Huang Tianhao, Lu Zhuimeng, Liu Zeya, and Gong Guoqiang, “Energy-Efficient Collision-Free Machine/AGV Scheduling Using Vehicle Edge Intelligence,” Sensors, vol. 24, no. 24, pp. 8044, 2024. [Online]. Available: https://doi.org/10.3390/s24248044. | en |
| dc.relation.references | Т. О. Говорущенко, М. В. Красовський, А. В. Горошко, i А. А. Явнюк, «Модель та алгоритм руху крокуючої платформи у багатофункціональній кооперативній робототехнічній систем,» Вісник Хмельницького національного універси-тету, No 3 (285), pp. 21-25, 2020. [Online]. Available: https://doi.org/10.31891/2307-5732-2020-285-3-4. | uk |
| dc.relation.references | S. Rakhmetullina, G. Zhomartkyzy, I. Krak, and A. Kamelova, “Development of an Algorithm for Solving an Asymmet-ric Routing Problem Based on the Ant Colony Method,” Cybernetics and Systems Analysis, 2023. [Online]. Available:https://doi.org/10.1007/s10559-023-00588-w. | en |
| dc.relation.references | Y. Chen, Y. Zhu, and K. Y. Lee, “AGV path planning based on dynamic priority method and environmental weight A-star,”Journal of Control and Decision, pp. 1-14, 2024. [Online]. Available:https://doi.org/10.1080/23307706.2024.2428315. | en |
| dc.relation.references | X. Chen, C. Wang, S. Zhou, and X. Song, “Dynamic rolling scheduling model for multi-AGVs in automated container terminals based on spatio-temporal position information,” Ocean & Coastal Management, vol. 258, pp. 107349, 2024. [Online]. Available:https://doi.org/10.1016/j.ocecoaman.2024.107349. | en |
| dc.relation.references | X. Ma, “Robot path planning and obstacle avoidance based on a combination of hybrid A-star algorithm and time-elastic-band algorithm,” in 2023 International Conference on Mechatronic Automation and Electrical Engineering (ICMAEE2023), Shanghai, China, 2024. [Online]. Available: https://doi.org/10.1063/5.0215541. | en |
| dc.relation.references | M. Wu, J. Gao, L. Li, and Y. Wang, “Control optimization of automated guided vehicles in container terminal based on Petri network and dynamic path planning,”Computers and Electrical Engineering, vol. 104, pp. 108471, 2022. [Online]. Availa-ble: https://doi.org/10.1016/j.compeleceng.2022.108471. | en |
| dc.relation.references | K. Li, X. Gong, M. Tahir, Tao, and R. Kumar, “Towards Path Planning Algorithm Combining with A-Star Algorithm and Dynamic Window Approach Algorithm,”International Journal of Advanced Computer Science and Applications, vol. 14, no. 6, 2023. [Online]. Available: https://doi.org/10.14569/ijacsa.2023.0140655. | en |
| dc.relation.references | Z. Lin, L. Feng, X. Chen, and W. Wu, “An Improved A-Star Algorithm Based on Dynamic Congestion Control,” in 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC), Suzhou, China, Apr. 22-24, 2022. [Online]. Available: https://doi.org/10.1109/ctisc54888.2022.9849801. | en |
| dc.relation.references | B. Shubyn, T. Maksymyuk, J. Gazda, B. Rusyn, and D. Mrozek, “Federated Learning: A Solution for Improving Anom-aly Detection Accuracy of Autonomous Guided Vehicles in Smart Manufacturing,”Lecture Notes in Electrical Engineering, Cham, 2024, pp. 746-761. [Online]. Available:https://doi.org/10.1007/978-3-031-61221-3_36. | en |
| dc.relation.references | X. Li, X. Hu, Z. Wang, and Z. Du, “Path Planning Based on Combination of Improved A-STAR Algorithm and DWA Algorithm,” in 2020 2nd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM), Manchester, UK, Oct. 15-17, 2020. [Online]. Available:https://doi.org/10.1109/aiam50918.2020.00025. | en |
| dc.relation.references | C. Chunbao Wang, L. Wang, J. Qin, Z. Wu, L. Duan, and Z. Li, “Path planning of automated guided vehicles based on improved A-Star algorithm,” in 2015 IEEE International Conference on Information and Automation (ICIA), Lijiang, China, Aug. 8-10, 2015. [Online]. Available:https://doi.org/10.1109/icinfa.2015.7279630. | en |
| dc.relation.references | E. Zhang, “Path planning algorithm based on Improved Artificial Potential Field method,” Applied and ComputationalEngineering, vol. 10, no. 1, pp. 167-174, 2023. [Online]. Available:https://doi.org/10.54254/2755-2721/10/20230170. | en |
| dc.relation.references | L. Zhang, Y. Yan, and Y. Hu, “Deep reinforcement learning for dynamic scheduling of energy-efficient automated guid-ed vehicles,”Journal of Intelligent Manufacturing, 2023. [Online]. Available: https://doi.org/10.1007/s10845-023-02208-y. | en |
| dc.relation.references | M. Aizat, A. Azmin, and W. Rahiman, “A Survey on Navigation Approaches for Automated Guided Vehicle Robots in Dynamic Surrounding,”IEEE Access,p. 1, 2023. [Online]. Available: https://doi.org/10.1109/access.2023.3263734. | en |
| dc.relation.references | O. Pavliuk, M. Medykovskyy, and T. Steclik, “Predicting AGV Battery Cell Voltage Using a Neural Network Approach with Preliminary Data Analysis and Processing,” in 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, Dec. 15-18, 2023. [Online]. Available: https://doi.org/10.1109/bigdata59044.2023.10386137. | en |
| dc.relation.references | O. Pavliuk, R. Cupek, T. Steclik, M. Medykovskyy, and M. Drewniak, “A Novel Methodology Based on a Deep Neural Network and Data Mining for Predicting the Segmental Voltage Drop in Automated Guided Vehicle Battery Cells,”Electronics, vol. 12, no. 22, p. 4636, 2023. [Online]. Available: https://doi.org/10.3390/electronics12224636. | en |
| dc.relation.references | O. Pavliuk, T. Steclik, and P. Biernacki, “The forecast of the AGV battery discharging via the machine learning meth-ods,” in 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, Dec. 17-20, 2022. [Online]. Available: https://doi.org/10.1109/bigdata55660.2022.10020968 | en |
| dc.identifier.doi | https://doi.org/10.31649/1997-9266-2025-178-1-7-17 | |