Показати скорочену інформацію

dc.contributor.authorZabolotnii, S. V.en
dc.contributor.authorKucheruk, V. Yu.en
dc.contributor.authorWarsza, Z. L.en
dc.contributor.authorKhassenov, А. K.en
dc.contributor.authorЗаболотній, С. В.uk
dc.contributor.authorКучерук, В. Ю.uk
dc.contributor.authorВарша, З. Л.uk
dc.contributor.authorХасенов, А. К.uk
dc.date.accessioned2022-02-01T10:51:00Z
dc.date.available2022-02-01T10:51:00Z
dc.date.issued2018
dc.identifier.citationPolynomial estimates of measurand parameters for data bimodal mixtures of exponential distributions [Text] / S. V. Zabolotnii, V. Yu. Kucheruk, Z. L. Warsza, A. K. Khassenov // Bulletin of the Karaganda University. – 2018. – № 2 (90). – P. 71-80.en
dc.identifier.issn2518-7198
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/35043
dc.description.abstractA non-conventional approach to finding estimates of the result of multiple measurements for a random error model in the form of bimodal mixtures of exponential distributions is proposed. This approach is based on the application of the Polynomial Maximization Method (PMM) with the description of random variables by higher order statistics (moment & cumulant). The analytical expressions for finding estimates and analysis accuracy to the degree of the polynomial r = 3 are presented. In case when the degree of the polynomial r = 1 and r = 2 (for symmetrically distributed data) polynomial estimate equivalent can be estimated as a mean (average arithmetic). In case when the degree of the polynomial r = 3, the uncertainty of the polynomial estimate decreases. The reduction coefficient depends on the values of the 4th and 6th order cumulant coefficients that characterize the degree of difference while the distribution of sample data the Gaussian model. By means of multiple statistical tests (Monte Carlo method), the properties of the normalization of polynomial estimates are investigated and a comparative analysis of their accuracy with known estimates (mean, median and center of folds) is made. Areas that depend on the depth of antimodality and sample size, in which polynomial estimates (for r = 3) are the most effective.en
dc.language.isoenen
dc.publisherKaragandy University of the name of academician E. A. Buketoven
dc.relation.ispartofBulletin of the Karaganda University. № 2 (90) : 71-80.en
dc.subjectbimodal distributionen
dc.subjectmeasured parameteren
dc.subjectvariance of estimatesen
dc.subjectmomentsen
dc.subjectcumulantsen
dc.subjectstochastic polynomialen
dc.titlePolynomial estimates of measurand parameters for data bimodal mixtures of exponential distributionsen
dc.typeArticle
dc.identifier.udc519.2:681.2


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію