Показати скорочену інформацію

dc.contributor.authorТупиця, І. М.uk
dc.contributor.authorКібіткін, С. О.uk
dc.contributor.authorСухотеплий, В. М.uk
dc.contributor.authorНепокритов, Д. М.uk
dc.contributor.authorКонов, Д. В.uk
dc.contributor.authorTupytsia, I. M.en
dc.contributor.authorKibitkin, S. O.en
dc.contributor.authorSukhoteplyi, V. M.en
dc.contributor.authorNepokrytov, D. M.en
dc.contributor.authorKonov, D. V.en
dc.date.accessioned2023-05-26T07:06:44Z
dc.date.available2023-05-26T07:06:44Z
dc.date.issued2022
dc.identifier.citationМетод реконструкції відеозображень для підвищення ефективності доставки в інфокомунікаційних системах аеросегмента [Текст] / І. М. Тупиця, С. О. Кібіткін, В. М. Сухотеплий [та ін.] // Вісник Вінницького політехнічного інституту. – 2022. – № 4. – С. 72–82.uk
dc.identifier.citationТупиця І. М., Кібіткін С. О., Сухотеплий В. М., Непокритов Д. М., Конов Д. В. Метод реконструкції відеозображень для підвищення ефективності доставки в інфокомунікаційних системах аеросегмента. Вісник Вінницького політехнічного інституту. 2022. № 4. С. 72–82.uk
dc.identifier.issn1997-9266
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/37196
dc.description.abstractНа сьогодні основним інструментом ефективного управління як на місцевому, регіональному, так і державному рівнях є наявність відповідного інформаційного забезпечення. Особливо це стосується сектора безпеки та оборони, де наявність потрібного інформаційного забезпечення є основною вимогою для ефективного реагування відомчих органів (відповідних силових органів) на кризові ситуації, що виникають як в суспільстві, так і державі в цілому. В зв’язку з чим, значно підвищується роль відеоінформаційного забезпечення як засобу для оперативного прийняття рішення. Це пов’язано з тим, що ключовими принципами реалізації відеоінформаційного забезпечення є своєчасність (оперативність) та достовірність. З цією метою досить активно використовуються стаціонарні та мобільні системи фото- та відеоспостереження. Використання останніх тісно пов’язано з аеросегментом — безпілотні літальні апарати та комплекси, роль яких підвищується наявністю таких властивостей, як масштабність та мобільність. Проте при цьому виникають такі проблемні фактори, пов’язані з використанням бездротових технологій зв’язку для доставки даних до кінцевого адресата: дисбаланс між постійно зростаючими обсягами даних та пропускною спроможністю каналів передачі даних; вплив завад, що виникають в процесі доставки відеоданих, на рівень достовірності реконструйованого відеозображення. Слід зазначити, що використання існуючих методів завадостійкого кодування для вирішення вищезазначених проблем призводить до суттєвого зростання обсягу відеоданих, що в умовах використання бездротових технологій зв’язку є критичним, відео-інформаційний ресурс передається зі значними часовими затримкам. З цією метою розробляється метод реконструкції відеоданих на основі використання ідентифікаторів (маркерів) нерівномірних кодових конструкцій, що присвоюються елементам кластерів, сформованих в результаті реструктуризації інформаційного простору за структурною ознакою. Відмінною рисою розробленого методу є незалежне декомпозиційне статистичне декодування окремих кодових підмножин за структурними ознаками, що за використання додаткової службової інформації, забезпечує локалізацію дії помилок в процесі реконструкції даних відеоінформаційного ресурсу.uk
dc.description.abstractToday, the main tool of effective management at both the local, regional, and state levels is the availability of appropriate information support. This especially applies to the security and defense sector, where the availability of the necessary infor-mation support is the main requirement for the effective response of departmental bodies (relevant law enforcement agen-cies) to crisis situations arising both in society and the state as a whole. In connection with this, the role of video information support as a means for prompt decision-making is significantly increased. This is due to the fact that the key principles of the implementation of video information provision are timeliness (operational) and reliability. For this purpose, stationary and mobile photo and video surveillance systems are quite actively used. The use of the latter is closely related to the aviation segment — unmanned aerial vehicles and complexes, the role of which is increased by the presence of such properties as scale and mobility. However, at the same time, the following problematic factors arise related to the use of wireless commu-nication technologies for data delivery to the final addressee: an imbalance between the ever-increasing volumes of data and the bandwidth of data transmission channels; the influence of obstacles arising in the process of video data delivery on the level of reliability of the reconstructed video image. It should be noted that the use of existing methods of interference-resistant coding to solve the above-mentioned problems leads to a significant increase in the volume of video data, which is critical in the conditions of using wireless communication technologies — video is an information resource transmitted with significant time delays. For this purpose, a method of video data reconstruction is being developed based on the use of identifiers (markers) of uneven code structures assigned to the elements of clusters formed as a result of the restructuring of the information space by structural feature. A distinctive feature of the developed method is the independent decompositional statistical decoding of individual code subsets according to structural features. This ensures, due to the use of additional service information, the localization of errors in the process of data reconstruction of the video information resource. A distinctive feature of the developed method is the independent decompositional statistical decoding of individual code subsets according to structural features. This ensures, due to the use of additional service information, the localization of errors in the process of data reconstruction of the video information resource. A distinctive feature of the developed meth-od is the independent decompositional statistical decoding of individual code subsets according to structural features. This ensures, due to the use of additional service information, the localization of errors in the process of data reconstruction of the video information resource.en
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofВісник Вінницького політехнічного інституту. № 4 : 72–82.uk
dc.relation.urihttps://visnyk.vntu.edu.ua/index.php/visnyk/article/view/2787
dc.subjectоперативністьuk
dc.subjectдостовірністьuk
dc.subjectтрансформаціяuk
dc.subjectреструктуризаціяuk
dc.subjectкластеризаціяuk
dc.subjectкодова конструкціяuk
dc.subjectвідеозображенняuk
dc.subjecttransformationen
dc.subjectrestructuringen
dc.subjectclusteringen
dc.subjectcode constructionen
dc.subjectvideo imagesen
dc.titleМетод реконструкції відеозображень для підвищення ефективності доставки в інфокомунікаційних системах аеросегментаuk
dc.title.alternativeVideo Data Video Image Reconstruction Method for Increasing Delivery Efficiency in Air Segment Infocommunication Systemsen
dc.typeArticle
dc.identifier.udc621.327:681.5
dc.relation.referencesКабінет Міністрів України, Постанова № 695 «Про затвердження Державної стратегії регіонального розвитку на 2021–2027 роки», 2020, серп. 5. [Електронний ресурс]. Режим доступу: https://zakon.rada.gov.ua/laws/show/695-2020-%D0%BF#Text .uk
dc.relation.referencesВерховна Рада України, Закон № 1882-IX «Про критичну інфраструктуру», 2021, лист. 16. [Електронний ресурс]. Режим доступу: https://zakon.rada.gov.ua/laws/show/1882-20#Text .uk
dc.relation.referencesКабінет Міністрів України. Постанова № 821 «Про затвердження Порядку проведення моніторингу рівня безпеки об’єктів критичної інфраструктури». 2021, січ. 13. [Електронний ресурс]. Режим доступу: https://zakon.rada.gov.ua/laws/show/821-2022-%D0%BF#Text .uk
dc.relation.referencesМіністерство Внутрішніх Справ України, Наказ № 12 «Про Про затвердження Інструкції із застосування війсь-ковослужбовцями Національної гвардії України технічних приладів і технічних засобів, що мають функції фото- і кіноз-йомки, відеозапису, засобів фото- і кінозйомки, відеозапису», 2022, лип. 22. [Електронний ресурс]. Режим доступу: https://zakon.rada.gov.ua/laws/show/z0294-21#Text .uk
dc.relation.referencesProzorro [Електронний ресурс]. Режим доступу: https://prozorro.gov.ua/tender/UA-2022-07-15-007145-a .en
dc.relation.referencesProzorro [Електронний ресурс]. Режим доступу: https://prozorro.gov.ua/tender/UA-2022-06-28-002174-a .en
dc.relation.referencesProzorro [Електронний ресурс]. Режим доступу: https://prozorro.gov.ua/tender/UA-2021-12-15-020377-c .en
dc.relation.referencesProzorro [Електронний ресурс]. Режим доступу: https://prozorro.gov.ua/tender/UA-2021-12-17-004587-b .en
dc.relation.referencesProzorro [Електронний ресурс]. Режим доступу: https://prozorro.gov.ua/tender/UA-2022-02-18-001165-c .en
dc.relation.referencesR. Swaminathan, and A. Madhukumar, “Classification of Error Correcting Codes and Estimation of Interleaver Param-eters in a Noisy Transmission Environment,” IEEE Transactions on Broadcasting, vol. 63, no. 3, 2017, pp. 463-478. https://doi.org/10.1109/TBC.2017.2704436 .en
dc.relation.referencesB. -F. Wu, Y. -C. Wu, L. -W. Chiu, and H. -P. Liu, “Soft Label With Channel Encoding for Dependent Facial Image Classification,” in IEEE Access, vol. 10, pp. 10661-10672, 2022, https://doi.org/10.1109/ACCESS.2022.3145195 .en
dc.relation.referencesY. Jiang, “Analysis of Bit Error Rate Between BCH Code and Convolutional Code in Picture Transmission,” in 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI), Zhuhai, 2022, pp. 77-80, https://doi.org/10.1109/IWECAI55315.2022.00023 .en
dc.relation.referencesS. D. Potey, and P. M. Dhande, “Error Detection and Correction Capability for BCH Encoder using VHDL,” in IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, 2019, pp. 1-4. https://doi.org/10.1109/I2CT45611.2019.9033847 .en
dc.relation.referencesP. Garlapati, B. Yamuna, and K. Balasubramanian, “A Low Power Hard Decision Decoder for BCH Codes,” in 2021 International Conference on Advances in Computing and Communications (ICACC), Kochi, Kakkanad, 2021, pp. 1-6, https://doi.org/10.1109/ICACC-202152719.2021.9708303 .en
dc.relation.referencesT. Richter, “Error Bounds for HDR Image Coding with JPEG XT,” in Data Compression Conference (DCC), 2017, pp. 122-130. https://doi.org/10.1109/DCC.2017.7 .en
dc.relation.referencesY. Chen, F. Wu, C. Li, and P. Varshney, “An Efficient Construction Strategy for Near-Optimal Variable-Length Error-Correcting Codes,” IEEE Communications Letters, vol. 23, no. 3, pp. 398-401, 2019. https://doi.org/10.1109/LCOMM.2019.2891623 .en
dc.relation.referencesX. Peng, J. Jiang, L. Tan, and J. Hou, “2-D Bi-Level Block Coding for Color Image Compression and Transmission With Bit-Error Awareness,” in IEEE Access, vol. 8, pp. 110093-110102, 2020. https://doi.org/10.1109/ACCESS.2020.3001073.en
dc.relation.referencesP. Lamsrichan, V. Manthamkarn, and U. Tuntoolavest, “Performance Evaluation of the Block Truncation Image Cod-ing with BCH Codes under Noisy Channels,” in 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Prachuap Khiri Khan, 2022, pp. 1-4.en
dc.relation.referencesN. Patsei, and K. Tsybulka, “Multi-class Object Classification Model Based on Error-Correcting Output Codes,” in IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, 2021, pp. 1-5, https://doi.org/10.1109/eStream53087.2021.9431443 .en
dc.relation.referencesP. Puteaux, and W. Puech, “Localization and Correction of Corrupted Pixel Blocks in Noisy Encrypted Images,” in 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), Paris, 2020, pp. 1-6. https://doi.org/10.1109/IPTA50016.2020.9286451 .en
dc.relation.referencesS. Khmelevskiy, I. Tupitsya, Q. A. Mahdi, О. Musienko, M. Parkhomenko, and Y. Borovensky, “Development of the external restructuring method to increase the efficiency of information resource data encoding,” Information Processing Systems, 3(166), pp. 52-61, 2021. https://doi.org/10.30748/soi.2021.166.06 .en
dc.relation.referencesG. B. Iwasokun, “Lossless JPEG-Huffman model for digital image compression,” Adv. Image Video Process, vol. 7, no. 1, pp. 1-12, Feb. 2019. https://doi.org/10.14738/aivp.71.5837 .en
dc.relation.referencesA. A. Jeny, M. B. Islam, M. S. Junayed, and D. Das, “Improving Image Compression with Adjacent Attention and Re-finement Block,” in IEEE Access, 2022. https://doi.org/10.1109/ACCESS.2022.3195295 .en
dc.relation.referencesS. A. Deepthi, E. S. Rao, and M. N. G. Prasad, “Image compression techniques in wireless sensor networks,” in Proc. IEEE Int. Conf. Smart Technol. Manage. Comput., Commun., Controls, Energy Mater. (ICSTM), Aug. 2017, pp. 286-289. https://doi.org/10.1109/ICSTM.2017.8089170 .en
dc.relation.referencesS. Khmelevsky et al., Method for quantitative criterion based transformation of the video information alphabet. Radioelectronic and Computer Systems, no. 2, pp. 200-216, 2022. https://doi.org/10.32620/reks.2022.2.16 .en
dc.relation.referencesY. S. Manzhos, and Y. V. Sokolova, “A Method of IoT Information Compression,” International Journal of Compu-ting, no. 21(1), pp. 100-110, 2022. https://doi.org/10.47839/ijc.21.1.2523 .en
dc.relation.referencesH. Huan, Z. Yuxuan, Y. Weijun, Y. Sihai, and L. Jing, “The Research on Image Processing Based on Wavelet Analy-sis,” in IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, 2022, pp. 1162-1165. https://doi.org/10.1109/ITAIC54216.2022.9836655 .en
dc.relation.referencesT. Shinde, “Efficient Image Set Compression,” in IEEE International Conference on Image Processing (ICIP), 2019, pp. 3016-3017. https://doi.org/10.1109/ICIP. 2019.8803230 .en
dc.relation.referencesJ. Lee, S. Cho, and S.-K. Beack, Context-adaptive entropy model for end-to-end optimized image compression, 2018. arXiv: 1809.10452.en
dc.relation.referencesW. Xiao, N. A. Wan, Hong, and X. Chen, “A Fast JPEG Image Compression Algorithm Based on DCT,” in IEEE Inter-national Conference on Smart Cloud (SmartCloud), 2020, pp. 106-110. https://doi.org/10.1109/ SmartCloud49737. 2020.00028 .en
dc.relation.referencesS. Khmelevsky, I. Tupitsya, M. Parkhomenko, and Y. Borovensky, “Model of Transformation of the Alphabet of the Encoded Data as a Tool to Provide the Necessary Level of Video Image Quality in Aeromonitoring Systems,” IT&I Work-shops, 2021, pp. 311-319. [Electronic resource]. Available: http://ceur-ws.org/Vol-3179/Short_4.pdf .en
dc.relation.referencesB. A. Lungisani, C. K. Lebekwe, A. M. Zungeru and A. Yahya, “Image Compression Techniques in Wireless Sensor Net-works: A Survey and Comparison,” in IEEE Access, vol. 10, pp. 82511-82530, 2022. https://doi.org/10.1109/ACCESS.2022.3195891.en
dc.relation.referencesH. Shi, K. M. Hou, X. Diao, L. Xing, J.-J. Li, and C. De Vaulx, A wireless multimedia sensor network platform for en-vironmental event detection dedicated to precision agriculture, 2018, arXiv: 1806.03237.en
dc.relation.referencesA. Djelouah, J. Campos, S. Schaub-Meyer, C. Schroers, “Neural Inter-Frame Compression for Video Coding,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 6420-6428. https://doi.org/10.1109/ICCV.2019. 00652.en
dc.relation.referencesO. Rippel, “Learned Video Compression,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 3453-3462. https://doi.org/10.1109/ICCV. 2019.00355 .en
dc.relation.referencesF. Artuğer, and F. Özkaynak, “Fractal Image Compression Method for Lossy Data Compression,” in International Conference on Artificial Intelligence and Data Processing (IDAP), 2018, pp. 1-6. https://doi.org/10.1109/IDAP. 2018.8620735 .en
dc.relation.referencesM. A. Alam, “Faster Image Compression Technique Based on LZW Algorithm Using GPU Parallel Processing,” in Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), 2018, pp. 272-275. https://doi.org/10.1109/ICIEV.2018.8640956 .en
dc.relation.referencesV. Barannik et al, “The Application of the Internal Restructuring Method of the Information Resource Data According to the Sign of the Number of Series of Units to Improve the Statistical Coding Efficiency,” in 10th IEEE International Confer-ence on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2019, pp. 65-69. https://doi.org/ 10.1109/IDAACS.2019.8924460.en
dc.relation.referencesV. Barannik, I. Tupitsya, O. Dodukh, V. Barannik, M. Parkhomenko, “The Method of Clustering Information Re-source Data on the Sign of the Number of Series of Units as a Tool to improve the Statistical Coding Efficiency,” in IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), 2019, pp. 32-35. https://doi.org/ 10.1109/cadsm.2019.8779243.en
dc.relation.referencesV. Barannik et al., “Two-Hierarchical Scheme of Statistical Coding of Information Resource Data with Quantitative Clustering,” in IEEE International Conference on Advanced Trends in Information Theory (ATIT), 2019, pp. 89-92. https://doi.org/10.1109/atit49449.2019.9030451 .en
dc.relation.referencesV. Barannik et al., “The analysis of the internal restructuring method efficiency used for a more compact representation of the encoded data,” in Advanced Trends in Information Theory (ATIT’2020): proceedings of the Intern. Conf., 2020, pp. 89-92. https://doi.org/10.1109/atit49449.2019.9030451 .en
dc.relation.referencesO. Yudin et al. “Creating a mathematical model for estimating the impact of errors in the process of reconstruction of non-uniform code structures on the quality of recoverable video images,” in Advanced Trends in Information Theory (ATIT’2021): proceedings of the Intern. Conf., pp. 38-41. https://doi.org/10.1109/atit54053.2021.9678887 .en
dc.relation.referencesЮ. В. Стасєв, І. M. Тупиця, і М. В. Пархоменко, «Метод додаткового скорочення структурної надмірності кодового представлення відеоданих,» Вісник Вінницького політехнічного інституту, № 3, с. 67-76, 2022. https://doi.org/10.31649/1997-9266-2022-162-3-67-76.uk
dc.relation.referencesUSC Viterbi, School of Engineering. [Electronic resource]. Available: https://sipi.usc.edu/database/database.php?volume= isc&image=26#top .en
dc.relation.referencesUSC Viterbi, School of Engineering. [Electronic resource]. Available: https://sipi.usc.edu/database/database.php?volume= misc&image=27#top .en
dc.relation.referencesUSC Viterbi, School of Engineering. [Electronic resource]. Available: https://sipi.usc.edu/database/database.php?volume= misc&image=24#top .en
dc.identifier.doihttps://doi.org/10.31649/1997-9266-2022-163-4-72-82


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію