dc.contributor.author | Hunkun, J. | en |
dc.contributor.author | Avrunin, O. G. | en |
dc.contributor.author | Ханкунь, Ц. | uk |
dc.contributor.author | Аврунін, О. Г. | uk |
dc.date.accessioned | 2024-06-25T07:12:23Z | |
dc.date.available | 2024-06-25T07:12:23Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Hunkun J. Explore the feasibility study of magnetic stereotaxic system [Текст] / J. Hunkun, O. G. Avrunin // Оптико-електронні інформаційно енергетичні технології. – 2023. – Т. 45, № 1. – С. 86-96. | en |
dc.identifier.issn | 1681-7893 | |
dc.identifier.issn | 2311-2662 | |
dc.identifier.uri | https://ir.lib.vntu.edu.ua//handle/123456789/42884 | |
dc.description.abstract | This paper introduces the magnetic stereotaxis system in detail, and establishes the basic model of the magnetic stereotaxic system in three-dimensional space through the computer simulation software COMSOL, and conducts theoretical analysis and computer simulation experiments on the non-contact control of implants. After that, the slide rail system controlled by Arduino was constructed in actual experiments, and the results of computer simulation experiments were verified. It has also been demonstrated that changing the external magnetic field strength in a magnetic stereotaxic system enables non-contact control of implant movement. | en |
dc.description.abstract | У цій статті детально представлено систему магнітного стереотаксису та встановлено базову модель магнітної стереотаксичної системи в тривимірному просторі за допомогою програмного забезпечення для комп’ютерного моделювання COMSOL, а також проведено теоретичний аналіз та експерименти з комп’ютерного моделювання безконтактного керування імплантатами. Після цього рейкова система, керована Arduino, була побудована в реальних експериментах, а результати експериментів комп’ютерного моделювання були перевірені. Також було продемонстровано, що зміна напруженості зовнішнього магнітного поля в магнітній стереотаксичній системі дозволяє безконтактно контролювати рух імплантату. | uk |
dc.language.iso | en | en |
dc.publisher | ВНТУ | uk |
dc.relation.ispartof | Оптико-електронні інформаційно енергетичні технології. № 1 : 86-96. | uk |
dc.relation.uri | https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/647 | |
dc.subject | Human health | en |
dc.subject | Magnetic field | en |
dc.subject | COMSOL Software | en |
dc.subject | Permanent magnets | en |
dc.subject | Arduino microcontrollers | en |
dc.subject | здоров'я людини | uk |
dc.subject | магнітне поле | uk |
dc.subject | програмне забезпечення COMSOL | uk |
dc.subject | постійні магніти | uk |
dc.subject | мікроконтролери Arduino | uk |
dc.title | Explore the feasibility study of magnetic stereotaxic system | en |
dc.title.alternative | Дослідження та техніко-економічне обґрунтування використання магнітної стереотаксичної системи | uk |
dc.type | Article | |
dc.identifier.udc | 681.7.01+66.088+615.478.6 | |
dc.relation.references | M A. Howard, M, Mayberg, M S. Grady, et al. Magnetic stereotactic system for treatment delivery: U.S. Patent 5,125,888[P]. 1992-6-30. | en |
dc.relation.references | M A. Howard, M, Mayberg, M S. Grady et al. Magnetic stereotactic system for treatment delivery: U.S. Patent 5,779,694[P]. 1998-7-14. | en |
dc.relation.references | M A. Howard, M, Mayburg, M S. Grady et al. Magnetic stereotactic system for treatment delivery: U.S. Patent 6,216,030[P]. 2001-4-10. | en |
dc.relation.references | O. Avrunin, M. Tymkovych, V. Semenets, & V. Piatykop. (2019). Computed tomography dataset analysis for stereotaxic neurosurgery navigation. Paper presented at the Proceedings of the International Conference on Advanced Optoelectronics and Lasers, CAOL, , 2019-September 606- 609. doi:10.1109/CAOL46282.2019.9019459 | en |
dc.relation.references | O. G. Avrunin, M. Alkhorayef, H. F. I Saied, & M. Y. Tymkovych, (2015). The surgical navigation system with optical position determination technology and sources of errors. Journal of Medical Imaging and Health Informatics, 5(4), 689-696. doi:10.1166/jmihi.2015.1444 | en |
dc.relation.references | Experimental study of the magnetic stereotaxis system for catheter manipulation within the brain / Grady M.S., Howard M.A., Dacey R.G. , Blume W., Lawson M., Werp P., Ritter R.C. // J. Neurosurg.– 2000.– Vol. 93, № 2.– P. 282–288. | en |
dc.relation.references | O. G. Avrunin, M.Y. Tymkovych, S.P. Moskovko, etc.. (2017). Using a priori data for segmentation anatomical structures of the brain. PrzegladElektrotechniczny, 93(5), 102-105. doi:10.15199/48.2017.05.20 | en |
dc.relation.references | R. G. McNeil, R. C. Ritter, B. Wang, M. A. Lawson, G. T. Gillies, K. G. Wika, et al., "Functional design features and initial performance characteristics of a magnetic-implant guidance system for stereotactic neurosurgery", IEEE Trans. Biomed. Eng., vol. 42, pp. 793-801, Aug. 1995. | en |
dc.relation.references | R W. Pryor. Multiphysics modeling using COMSOL®: a first principles approach[M]. Jones & Bartlett Publishers, 2009. | en |
dc.relation.references | C. Multiphysics Introduction to COMSOL multiphysics®[J]. COMSOL Multiphysics, Burlington, MA, accessed Feb, 1998, 9: 2018. | en |
dc.relation.references | Samoh A, Niamjan N, Yaiprasert C, et al. Comsol simulations of magnetic flux generated by permanent magnets with ring geometries[J]. Journal of Science and Arts, 2019, 19(3): 775-782. | en |
dc.relation.references | O. G. Avrunin, Y. V Nosova,.etc. (2021). Possibilities of automated diagnostics of odontogenic sinusitis according to the computer tomography data. Sensors (Switzerland), 21(4), 1-22. doi:10.3390/s21041198 | en |
dc.relation.references | J. Hunkun and O. Avrunin, "Possibilities of Field Formation by Permanent Magnets in Magnetic Stereotactic Systems," 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2022, pp. 1-4, doi: 10.1109/KhPIWeek57572.2022.9916450. | en |
dc.relation.references | J. C. Maxwell. VIII. A dynamical theory of the electromagnetic field[J]. Philosophical transactions of the Royal Society of London, 1865 (155): 459-512. | en |
dc.relation.references | M.F, Zaeh T. Oertli, J. Milberg. Finite element modelling of ball screw feed drive systems[J]. CIRP Annals, 2004, 53(1): 289-292. | en |
dc.relation.references | Jr. R. Pulford Linear stepper motor: U.S. Patent 6,756,705[P]. 2004-6-29. | en |
dc.relation.references | Defoort M, Nollet F, Floquet T, et al. A third-order sliding-mode controller for a stepper motor[J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3337-3346. | en |
dc.relation.references | L. Louis. working principle of Arduino and u sing it[J]. International Journal of Control, Automation, Communication and Systems (IJCACS), 2016, 1(2): 21-29. | en |
dc.relation.references | Y. A. Badamasi The working principle of an Arduino[C]//2014 11th international conference on electronics, computer and computation (ICECCO). IEEE, 2014: 1-4. | en |
dc.relation.references | A. A. Galadima Arduino as a learning tool[C]//2014 11th International Conference on Electronics, Computer and Computation (ICECCO). IEEE, 2014: 1-4. | en |
dc.relation.references | Valentina Vassilenko, Anna Poplavska, Sergiy Pavlov, and etc. "Automated features analysis of patients with spinal diseases using medical thermal images", Proc. SPIE 11456, Optical Fibers and Their Applications 2020, 114560L (12 June 2020); https://doi.org/10.1117/12.2569780/ | en |
dc.identifier.doi | https://doi.org/10.31649/1681-7893-2023-45-1-86-96 | |