Показать сокращенную информацию

dc.contributor.authorАрзікулов, Т. С.uk
dc.contributor.authorБаган, Т. Г.uk
dc.contributor.authorArzikulov, T. S.en
dc.contributor.authorBahan, T. H.en
dc.date.accessioned2024-06-25T08:41:41Z
dc.date.available2024-06-25T08:41:41Z
dc.date.issued2023
dc.identifier.citationАрзікулов Т. С. Аналіз систем керування процесами горіння на основі засобів комп’ютерного зору та обробки зображень [Текст] / Т. С. Арзікулов, Т. Г. Баган // Оптико-електронні інформаційно енергетичні технології. – 2023. – Т. 45, № 1. – С. 55-63.uk
dc.identifier.issn1681-7893
dc.identifier.issn2311-2662
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/42890
dc.description.abstractТенденції на світовому ринку до підвищення енергоефективності та екологічності традиційних засобів отримання енергії, таких як промислові котлоагрегати, спричинили необхідність широкого впровадження та використання новітніх засобів оптимального управління даними об’єктами. Понад 60% світової енерго-генерації відбувається через процес спалення палива. В українському науковому просторі значну увагу приділяють аналітичним, предиктивним та нечітким регуляторам, як засобам оптимального управління, та майже не представлене використання більш нової та перспективної галузі використання засобів комп’ютерного зору, яка, в зв’язку з високим рівнем розвитку інформаційних технологій в країні, є досить перспективною для майбутнього розвитку технологій енергоефективності, в тому числі й на експортному ринку. Стаття розглядає процес розвитку та становлення сучасного напрямку використання засобів комп’ютерного зору для оптимізації процесу спалення різних типів палива. Розглядається шлях та сучасні тенденції розвитку. За тридцять п’ять років проведення досліджень було відзначено значно більшу швидкодію та досить широкий спектр аналітичної інформації, що може бути представлена системами подібного типу у порівнянні з іншими. Починаючи з відносно простих одно-параметричних систем моніторингу та оптимізації, які за рахунок швидкодії були здатні поліпшити протікання перехідних процесів та зробили можливими використання систем в екстремальних режимах, тридцять років тому, до складних комплексних та багато-параметричних систем, що виконують оптимізацію за сукупністю параметрів, вже через двадцять років досліджень. Системи комп’ютерного зору надають широкий спектр аналітичної інформації, що може бути використана як в процесі автоматичного керування, так і для визначення якісних показників використання котлоагрегата.uk
dc.description.abstractTrends in the world market to increase the energy efficiency and environmental friendliness of traditional means of obtaining energy, such as industrial boiler units, have caused the need for widespread implementation and use of the latest means of optimal management of these objects. More than 60% of the world's energy generation occurs through the process of burning fuel. In the Ukrainian scientific space, considerable attention is paid to analytical, predictive and fuzzy regulators as means of optimal management, and the use of a newer and more promising field of computer vision, which, in connection with the high level of development of information technologies in the country, is almost not represented, is quite promising for the future development of energy efficiency technologies, including in the export market. The article examines the process of development and formation of the modern direction of using computer vision tools to optimize the process of burning different types of fuel. The path and modern trends of development are considered. Over thirty-five years of research, significantly higher speed and a fairly wide range of analytical information, which can be presented by systems of this type compared to others, were noted. Starting with relatively simple single-parameter monitoring and optimization systems, which due to their speed were able to improve the flow of transient processes and made possible the use of systems in extreme mode, thirty years ago, to complex and multi-parameter systems that perform optimization based on a set of parameters, already after twenty years of research. Computer vision systems provide a wide range of analytical information that can be used both in the process of automatic control and to determine the quality indicators of boiler unit use.en
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofОптико-електронні інформаційно енергетичні технології. № 1 : 55-63.uk
dc.relation.urihttps://oeipt.vntu.edu.ua/index.php/oeipt/article/view/650
dc.subjectобробка зображеньuk
dc.subjectкомп'ютерний зірuk
dc.subjectфакелuk
dc.subjectгорінняuk
dc.subjectкеруванняuk
dc.subjectМоніторингuk
dc.subjectmanagementen
dc.subjectmonitoringen
dc.subjectimage processingen
dc.subjectcomputer visionen
dc.subjectanalysisen
dc.subjecttorchen
dc.subjectcombustionen
dc.titleАналіз систем керування процесами горіння на основі засобів комп’ютерного зору та обробки зображеньuk
dc.title.alternativeThe emergence and development of the combustion process management system based on computer vision and image processingen
dc.typeArticle
dc.identifier.udc536.46
dc.relation.referencesIEA: World Energy Balances, https://www.iea.org/data-and-statistics/data-product/world-energy-balancesen
dc.relation.referencesR. Lilja, M. Ollus, R. Sutinen. (1986). Image Processing for the Control of Burning Processes. IFAC Proceedings Volumes. Volume 19, Issue 9, June 1986, Pages 81-88.en
dc.relation.referencesN. Kurihara, M. Nishikawa, A. Watanabe an others. A Combustion Diagnosis Method for Pulverized Coal Boilers Using Flame-Image Recognition Technology. IEEE Transactions on Energy Conversion.Volume: EC-1, Issue: 2, June 1986. pages: 99-103en
dc.relation.referencesJ. Hirvonen, K. Ikonen. Image Processing in Combustion Management. IFAC Proceedings Volumes. Volume 25, Issue 6, May 1992, Pages 347-350en
dc.relation.referencesHitoven J. Lilja R. Ikonen K. Nihtinen J. Image processing in combustion control. International Journal of Pattern Recognition and Artificial Intelligence, Vol. 10 No. 2 (1996), Pages 129—137.en
dc.relation.referencesMr. D. Popovic, Mr. A. V. Andersin, Mr. A. J. Huttunen, Mr. J. J. Nihtinen. FLAME IMAGE MONITORING AND ANALYSIS IN COMBUSTION MANAGEMENT. COMADEM '97 10th International Congress and Exhibition on Condition Monitoring and Diagnostic Engineering Management. Volume 1. June 1997. Pages 145-152.en
dc.relation.referencesAlien M. G., Butler C. T, Johnson S. A., Lo E. Y. and Russo F. An imaging neural network combustion control system for utility boiler applications. Combustion and Flames. (July 1993) Vol. 94. No. 1. Page: 205-214.en
dc.relation.referencesYingping Huang, Yong Yan, Gang Lu and Alan Reed. On-line flicker measurement of gaseous flames by image processing and spectral analysis. Measurement Science and Technology, Volume 10, Number 8 (August 1999).en
dc.relation.referencesG. Lu, Y. Van, Y. Huang and A. Reed. An intelligent vision system for monitoring and control of combustion flames. Measurement and control, Volume 32, July 1999. Page: 164-168.en
dc.relation.referencesBaldini Gaetano, Paola Campadelli, Raffaella Lanzarotti. Combustion analysis by image processing of premixed flames. Proceedings 2000 International Conference on Image Processing. 10-13 September 2000en
dc.relation.referencesY. Yan, G. Lu, M. Colechin. Monitoring and characterisation of pulverised coal flames using digital imaging techniques. Volume 81, Issue 5, March 2002, Pages 647-655.en
dc.relation.referencesGang Lu; Yong Yan; M. Colechin. A digital imaging based multifunctional flame monitoring system. IEEE Transactions on Instrumentation and Measurement. Volume: 53, Issue: 4 (August 2004), Page: 1152 - 1158.en
dc.relation.referencesM. Chimenti, C. Di Natali, G. Mariotti, E. Paganini, G. Pieri, O. Salvetti. An IR image processing approach for characterising combustion instability. Infrared Physics & Technology. Volume 46, Issues 1– 2, December 2004, Pages 41-47.en
dc.relation.referencesHuai-Chun Zhou, Chun Lou, Qiang Cheng, Zhiwei Jiang and others. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace. Proceedings of the Combustion Institute. Volume 30, Issue 1, January 2005, Pages 1699-1706.en
dc.relation.references15 - G. Szatvanyi, C. Duchesne, and G. Bartolacci. Multivariate Image Analysis of Flames for Product Quality and Combustion Control in Rotary Kilns. Industrial & Engineering Chemistry Research. Vol. 45 (2006). No. 13. P.:4706–4715.en
dc.relation.referencesMyriam Cousineau-Pelletier, Carl Duchesne, Donald F Mccabe. Monitoring and control of biomass boilers using multivariate image analysis. [Електронний ресурс] Режим доступу: https://www.researchgate.net/publication/268351668_MONITORING_AND_CONTROL_OF_BIOMASS_BOILERS_USING_MULTIVARIATE_IMAGE_ANALYSISen
dc.relation.referencesHua-Wei Huang and Yang Zhang. Flame colour characterization in the visible and infrared spectrum using a digital camera and image processing. Measurement Science and Technology. June 2008. Vol. 19(8):085406.en
dc.relation.referencesErik Schaffernicht1, Volker Stephan, Klaus Debes, Horst-Michael Gross. 32nd Annual German Conference on AI, Paderborn, Germany, September 15-18, 2009, Proceedings. / KI 2009: Advances in Artificial Intelligence pp 395–402.en
dc.relation.references19 - Junghui Chen, Tong-Yang Hsu, Chih-Chien Chen, Yi-Cheng Cheng. Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images. Applied Energy. Vol. 87, Issue 7, July 2010, Pages 2169-2179.en
dc.relation.referencesBenyuan Huang, Zixue Luo, Huaichun Zhou. Optimization of combustion based on introducing radiant energy signal in pulverized coal-fired boiler. Fuel Processing Technology. Volume 91, Issue 6, June 2010, Pages 660-668.en
dc.relation.referencesT. Qiu, Y. Yan and G. Lu, "An Autoadaptive Edge-Detection Algorithm for Flame and Fire Image Processing," in IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp. 1486-1493, May 2012, doi: 10.1109/TIM.2011.2175833.en
dc.relation.referencesDavid Castiñeira, Blake C. Rawlings, and Thomas F. Edgar. Multivariate Image Analysis (MIA) for Industrial Flare Combustion Control. Industrial & Engineering Chemistry Research. Vol. - 51 (May 2012), Is. - 39, P. 12642–12652.en
dc.relation.referencesWaldemar Wójcik, Konrad Gromaszek, Andrzej Kotyra, Tomasz Lawicki. Pulverized coal combustion boiler efficient control. PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 11b/2012, Page: 316-319.pl
dc.relation.referencesW. Wójcik, A. Kotyra, A. Smolarz и C. Wojciechowski, «Application of wavelet transformation for analysis of measurements in fibre optic flame monitoring system,» Proceedings of SPIE, V. 4239, pp. 96– 101, 2000.en
dc.relation.referencesW. Wójcik, T. Biegański, A. Kotyra и A. Smolarz, «Forecasting of changes of flame flickering in coal flame burner,» Proceeding of SPIE, 3189, pp. 100–109, 1997.en
dc.relation.referencesW. Wójcik, A. Smolarz, A. Kotyra, C. Wojciechowski и P. Komada, «Optimisation of optical fibre probe for flame monitoring by application of finite elements method,» в Proceedings on 2-nd International Symposium on "Microelectronics Technologies and Microsystems", Lviv, 1998.en
dc.relation.referencesW. Wójcik, «The utilisation of flame flicker in the fiber-optic system for combustion quality,» в EUROSENSORS IX, Warsaw, 1997. [151] A. Smolarz, W. Wójcik, J. Ballester, R. Hernandez, A. Sanz и T. Golec, «Fuzzy controller for a lean premixed burner,» Przegląd Elektrotechniczny, № 7/2010, pp. 287– 289, 2010.pl
dc.relation.referencesW. Wójcik, M. Kalita, T. Golec и A. Smolarz, «Zastosowanie algorytmów koewolucyjnych do modelowania wybranych parametrów palnika energetycznego,» Przegląd Elektrotechniczny, № 7/2010, pp. 244–246, 2010.pl
dc.identifier.doihttps://doi.org/10.31649/1681-7893-2023-45-1-55-63


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию