Показати скорочену інформацію

dc.contributor.authorПастушенко, Г. О.uk
dc.contributor.authorPastushenko, H. O.en
dc.date.accessioned2025-07-18T09:24:43Z
dc.date.available2025-07-18T09:24:43Z
dc.date.issued2025
dc.identifier.citationПастушенко Г. О. Аналіз методів локалізації для бездротових сенсорних мереж у внутрішньому середовищі IoT // Вісник Вінницького політехнічного інституту. 2025. № 1. С. 150–155.uk
dc.identifier.issn1997-9274
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/46869
dc.description.abstractExperimental studies and analysis of various localization methods for wireless sensor networks in the indoor environment of the Internet of Things (IoT) have been conducted. The aim of the work was to determine the effectiveness and limitations of the main localization approaches for their further application in different environments. The investigated methods included minimum Capon variance, ESPRIT algorithm, weighted subspace fitting, proximity-based positioning, and RSSI-based trilateration. The main focus was on analyzing the key characteristics of the methods, such as accuracy, energy efficiency, scalability, interference resistance, sensitivity to environmental parameters, and signal transmission range. The results showed that each of the considered methods has its own unique advantages and limitations depending on the specifics of the application. The ESPRIT algorithm, for example, provided the highest positioning accuracy and scalability, making it suitable for large and complex networks with high node density. Proximity-based positioning methods were found to be the most energy-efficient, which is a crucial factor for IoT applications with tight power constraints. The RSSI-based trilateration method demonstrated high noise immunity and stability over a wide range of conditions, including signal density variability and the presence of physical barriers in the environment. The study enabled to formulate recommendations for choosing the optimal localization method depending on the specific requirements for accuracy, power consumption, network stability, and operating environment characteristics. The results obtained are of practical value for IoT system developers, as they contribute to optimizing network performance, increasing data transmission reliability, and reducing power consumption. The findings of this study can serve as a basis for future developments and improvements of localization algorithms, ensuring their effective use in a wide range of IoT applications, such as smart buildings, industrial monitoring, logistics, and healthcare. Keywords: localization methods, wireless sensor networks, Internet of Things, localization accuracy, energy efficiency, scalability, interference resistance, sensitivity, trilateration, ESPRIT, minimum Capon variance, RSSI, proximity-based positioning, weighted subspace fitting.en
dc.description.abstractПроведено експериментальні дослідження та аналіз різних методів локалізації для бездротових сенсорних мереж у внутрішньому середовищі Інтернету речей (IoT). Мета роботи — визначити ефективність і обмеження основних підходів до локалізації для подальшого їхнього застосування в умовах внутрішнього середовища. Досліджені методи включали мінімальну дисперсію Кейпона, алгоритм ESPRIT, підгонку зваженого підпростору, позиціонування на основі близькості та трилатерацію на основі RSSI. Основну увагу приділено аналізу ключових характеристик методів, таких як точність, енергоефективність, масштабованість, стійкість до перешкод, чутливість до параметрів середовища та діапазон передачі сигналу. Результати показали, що кожний з розглянутих методів має свої унікальні переваги та обмеження залежно від спец�uk
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofВісник Вінницького політехнічного інституту. № 1 : 150-155.uk
dc.relation.urihttps://visnyk.vntu.edu.ua/index.php/visnyk/article/view/3178
dc.subjectметоди локалізаціїuk
dc.subjectбездротові сенсорні мережіuk
dc.subjectІнтернет речей (IoT)uk
dc.subjectточність локалізаціїuk
dc.subjectенергоефективністьuk
dc.subjectмасштабованістьuk
dc.subjectстійкість до перешкодuk
dc.subjectчутливістьuk
dc.subjectтрилатераціяuk
dc.subjectESPRITen
dc.subjectмінімальна дисперсія Кейпонаuk
dc.subjectRSSIen
dc.subjectпозиціонування на основі близькостіuk
dc.subjectпідгонка зваженого підпросторуuk
dc.subjectlocalization methodsen
dc.subjectwireless sensor networksen
dc.subjectInternet of Things (IoT)en
dc.subjectlocalization accuracyen
dc.subjectenergy efficiencyen
dc.subjectscalabilityen
dc.subjectinterference resistanceen
dc.subjectsensitivityen
dc.subjecttrilaterationen
dc.subjectESPRITen
dc.subjectminimum Capon varianceen
dc.subjectRSSIen
dc.subjectproximitybased positioningen
dc.subjectweighted subspace fittingen
dc.titleАналіз методів локалізації для бездротових сенсорних мереж у внутрішньому середовищі IoTuk
dc.title.alternativeAnalysis of Localization Methods for Wireless Sensor Networks in Indoor IoT Environmenten
dc.typeArticle, professional native edition
dc.typeArticle
dc.identifier.udc004.94:621.391.8
dc.relation.referencesM. Sandeli, M. A. Bouanaka, and I. Kitouni, “An Efficient Localization Approach in Wireless Sensor Networks Using Chicken Swarm Optimization,” in 2021 International Conference on Information Systems and Advanced Technologies (ICISAT), Tebessa, Algeria, 2021, pp. 1-6. https://doi.org/10.1109/ICISAT54145.2021.9678446en
dc.relation.referencesS. Avareddy and R. V. Biradar, “Comparative Analysis of Localization Techniques and Security Mechanisms,” in WSN, 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, Karnataka, India, 2021, pp. 1-4. https://doi.org/ 10.1109/ICMNWC52512.2021.9688549 .en
dc.relation.references] S. Padhy, S. Dash, P. P. Malla, S. Routray, and Y. Qi, “An Energy Efficient Node Localization Algorithm for Wireless Sensor Network,” in 2021 IEEE 2nd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC), Bhubaneswar, India, 2021, pp. 1-5. https://doi.org/10.1109/AESPC52704.2021.9708459 .en
dc.relation.referencesP. Khobragade, P. Ghutke, V. P. Kalbande, and N. Purohit, “Advancement in Internet of Things (IoT) Based Solar Collector for Thermal Energy Storage System Devices: A Review,” in 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 2022, pp. 1-5. https://doi.org/10.1109/PARC52418.2022.9726651 .en
dc.relation.referencesA. Lachouri, and A. Ardjouni, “Aeroelastic Stability of Combined Plunge-Pitch Mode Shapes in a Linear Compressor Cascade,” Advances in the Theory of Nonlinear Analysis and Its Applications, vol. 2, pp. 101-117, 2022.en
dc.relation.referencesA. Panwar, R. Morwal, and S. Kumar, “Fixed Points of ρ-Nonexpansive Mappings Using MP Iterative Process,” Advances in the Theory of Nonlinear Analysis and Its Applications, vol. 2, pp. 229-245, 2022.en
dc.relation.referencesS. Bhattacharya, and M. Pandey, “Deploying an Energy Efficient, Secure & High-Speed Sidechain-Based TinyML Model for Soil Quality Monitoring and Management in Agriculture,” Expert Systems with Applications, vol. 242, pp. 122735, 2024. https://doi.org/10.1016/j.eswa.2023.12273 5en
dc.relation.referencesS. Shivadekar, B. Kataria, S. Limkar, K. S. Wagh, S. Lavate, and R. A. Mulla, “Design of an Efficient Multimodal Engine for Preemption and Post-Treatment Recommendations for Skin Diseases via a Deep Learning-Based Hybrid Bioinspired Process,” Soft Computing, pp. 1-19, 2023.en
dc.relation.referencesH. Boutebba, H. Lakhal, K. Slimani, and T. Belhadi, “The Nontrivial Solutions for Nonlinear Fractional SchrödingerPoisson System Involving New Fractional Operator,” Advances in the Theory of Nonlinear Analysis and Its Applications, vol. 2, pp. 121-132, 2023en
dc.identifier.doihttps://doi.org/10.31649/1997-9266-2025-178-1-150-155


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію