dc.contributor.author | Тупиця, І. М. | uk |
dc.contributor.author | Іващук, Б. М. | uk |
dc.contributor.author | Волков, Ю. П. | uk |
dc.contributor.author | Пархоменко, М. В. | uk |
dc.contributor.author | Галепа, О. Г. | uk |
dc.contributor.author | Tupitsya, I. M. | en |
dc.contributor.author | Ivashchuk, B. M. | en |
dc.contributor.author | Volkov, Yu. P. | en |
dc.contributor.author | Parkhomenko, M. V. | en |
dc.contributor.author | Halepa, O. H. | en |
dc.date.accessioned | 2025-09-11T08:55:55Z | |
dc.date.available | 2025-09-11T08:55:55Z | |
dc.date.issued | 2025 | |
dc.identifier.citation | Тупиця І. М., Іващук Б. М., Волков Ю. П., Пархоменко М. В. Алгоритм формування моделі комп’ютерного зору в інтересах системи повітряної розвідки // Вісник Вінницького політехнічного інституту. 2025. № 3. С. 140–146. | uk |
dc.identifier.issn | 1997-9266 | |
dc.identifier.uri | https://ir.lib.vntu.edu.ua//handle/123456789/49082 | |
dc.description.abstract | The significant growth of data traffic generated using unmanned aircraft systems and transmitted to the command and control station has increased the requirements for collecting and processing of aerial reconnaissance data. Main requirements include the efficiency of processing aerial monitoring data and the reliability of aerial reconnaissance data. In this regard, the issue of integrating the computer vision and artificial intelligence technologies into the process of processing intelligence information is relevant. Requirements are formed for a computer vision model in the interests of the aerial reconnaissance system, the main ones are the following: provision of automated detection and classification of objects of interest in digital images (video frames); provision of the required level of efficiency of aerial reconnaissance data processing; guaranteeing the possibility of transforming the computer vision model; ensuring the necessary level of reliability of aerial reconnaissance data in the conditions of using UAVs; taking into account the professional competencies of specialists in collecting and processing intelligence information; simplicity of algorithmic implementation; efficiency of model formation.
The algorithm for the formation of a computer vision model is developed in the interest of the air reconnaissance system to increase the efficiency of processing air monitoring data in the conditions of providing the required level of reliability. A distinctive feature of the proposed algorithm is considering the level of operator training and computing power of the unmanned aviation complex (command and control station) to form a computer vision model. This allows to choose one of two approaches to training the model (autonomous, using the resources of open web platforms), which, in turn, allows to create conditions for increasing the efficiency of processing air monitoring data in the conditions pf providing l the required level of reliability. Further scientific research will be directed for the assessment of the the effectiveness of using the proposed approach to increase the autonomy of unmanned aviation systems in the interests of the air reconnaissance system. | en |
dc.description.abstract | Суттєве зростання трафіку даних, що формуються з використанням безпілотних авіаційних систем і передаються до станції керування та контролю, викликало зростання вимог, які висуваються до процесу збору та обробки даних повітряної розвідки. До основних з них відносяться оперативність обробки даних аеромоніторингу та достовірність даних повітряної розвідки. В зв’язку з чим, актуальним є питання інтеграції в процес обробки розвідувальної інформації технологій комп’ютерного зору та штучного інтелекту. Формуються вимоги до моделі комп’ютерного зору в інтересах системи повітряної розвідки, основні серед яких такі: забезпечення автоматизованого виявлення та класифікації об’єктів інтересу на цифрових зображеннях (відеокадрах); забезпечення необхідного рівня оперативності обробки даних повітряної розвідки; забезпечення можливості трансформації моделі комп’ютерного зору; забезпечення необхідного рівня достовірності даних повітряної розвідки в умовах застосування БпАС; врахування професійних компетентностей фахівців зі збору та обробки розвідувальної інформації; простота алгоритмічної реалізації; оперативність формування моделі.
Розробляється алгоритм формування моделі комп’ютерного зору в інтересах системи повітряної розвідки для підвищення оперативності оброблення даних аеромоніторингу в у мовах забезпечення необхідного рівня їхньої достовірності. Відмінною рисою запропонованого алгоритму є врахування рівня підготовки оператора та обчислювальних потужностей безпілотного авіаційного комплексу (станції керування та контролю) для формування моделі комп’ютерного зору. Це дозволяє вибрати один з двох підходів для тренування моделі (автономний, використання ресурсів відкритих веб-платформ), що також дозволяє створити умови для підвищення оперативності обробки даних аеромоніторингу в у мовах забезпечення необхідного рівня їхньої достовірності. Подальші наукові дослідження будуть спрямовані на оцінку ефективності використання запропонованого підходу з позиції підвищення автономності безпілотних авіаційних систем в інтересах системи повітряної розвідки. | uk |
dc.language.iso | uk_UA | uk_UA |
dc.publisher | ВНТУ | uk |
dc.relation.ispartof | Вісник Вінницького політехнічного інституту. № 3 : 140-146. | uk |
dc.relation.uri | https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/3271 | |
dc.subject | безпілотний літальний апарат | uk |
dc.subject | повітряна розвідка | uk |
dc.subject | об’єкт інтересу | uk |
dc.subject | цифрове зображення | uk |
dc.subject | оперативність | uk |
dc.subject | достовірність | uk |
dc.subject | штучний інтелект | uk |
dc.subject | комп’ютерний зір | uk |
dc.subject | unmanned aerial vehicle | uk |
dc.subject | air reconnaissance | en |
dc.subject | object of interest | en |
dc.subject | digital image | en |
dc.subject | efficiency | en |
dc.subject | reliability | en |
dc.subject | artificial intelligence | en |
dc.subject | computer vision | en |
dc.title | Алгоритм формування моделі комп’ютерного зору в інтересах системи повітряної розвідки | uk |
dc.title.alternative | Algorithm for Forming a Computer Vision Model in the Interests of an Air Reconnaissance System | en |
dc.type | Article, professional native edition | |
dc.type | Article | |
dc.identifier.udc | 621.327:681.5 | |
dc.relation.references | A. Telili, I. Farhat, W. Hamidouche, and H. Amirpour, “ODVISTA: An Omnidirectional Video Dataset for Super-Resolution and Quality Enhancement Tasks,” IEEE International Conference on Image Processing (ICIP), 2024, pp. 131-136. http;//doi.org/10.1109/ICIP51287.2024.10647612 . | en |
dc.relation.references | X. Li, and J. Wu, “Developing a More Reliable Framework for Extracting Traffic Data From a UAV Video,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 11, pp. 12272-12283, 2023.https://doi.org/10.1109/TITS.2023.3290827 . | en |
dc.relation.references | Ю.В.Стасєв, І.М.Тупиця, і М.В. Пархоменко, «Метод додаткового скорочення структурної надмірності кодового представлення відеоданих,»Вісник Вінницького політехнічного інституту, No3, с. 67-76, 2022.https://doi.org/10.31649/1997-9266-2022-162-3-67-76 | uk |
dc.relation.references | Y. Liang, T. Jia, X. Liu, and H. Zhang, “Image Compression Algorithm Based on Region of Interest Extraction for Un-manned Aerial Vehicles Communication,” IEEE 8th Information Technology and Mechatronics Engineering Conference (ITOEC), 2025, pp. 648-652. https://doi.org/10.1109/ITOEC63606.2025.10967764 | en |
dc.relation.references | D. Karlov, I. Tupitsya, and М. Parkhomenko, Methodology of increasing the reliability of video information in infocommunication networks aerosegment.Radio Electronics, Computer Science, Control. 2022. No. 3. P. 120−132 | en |
dc.relation.references | D. Karlov, I. Tupitsya, М. Parkhomenko, O. Musienko, and A. Lekakh, “Compression Coding Method Using Internal Restructuring of Information,” Space. International Journal of Computing,vol. 21,no. 3, pp. 360-368,2022.https://doi.org/10.47839/ijc.21.3.269 | en |
dc.relation.references | I. Tupitsya, I. Deinezhenko, Ye. Kryzhanivskyi, M. Parkhomenko, Yu. Volkov, and G. Eidelstein, “Method of Automating the Process of Object Detection to Increase the Efficiency of Deciphering Aerial Reconnaissance Data,” Information Processing Systems,No 2 (173), pp. 63-73, 2023. https://doi.org/10.30748/soi.2023.173.08 | en |
dc.relation.references | I. Tupіtsya, V. Kryvonos, S. Kibitkin, L. Ivashchuk, and A. Bielivtsov, “The Conceptual Model of the Automation of Deciphering Aerial Reconnaissance Data Using Artificial Intelligence System Technologies,” Systems of Arms and Military Equipment, No 1 (73), pp. 76-82, 2023. https://doi.org/10.30748/soivt.2023.73. | en |
dc.relation.references | P. Y. Ingle, Y. Kim, and Y.-G. Kim, “DVS: A Drone Video Synopsis towards Storing and Analyzing Drone Surveillance Data in Smart Cities,” Systems, vol. 10, no. 5, 10(5), pp. 170, 2022. https://doi.org/10.3390/systems | en |
dc.relation.references | A. Gohari, A. Ahmad, R. Rahim, A. Supa’at, S. Razak, and M. Gismalla, “Involvement of Surveillance Drones in Smart Cities: A Systematic Review,”IEEE Access , vol. 10, pp. 56611-56628, 2022. https://doi.org/10.1109/ACCESS.2022.3 | en |
dc.relation.references | M. Bakirci, and I. Bayraktar, “Integrating UAV-Based Aerial Monitoring and SSD for Enhanced Traffic Management in Smart Cities,” Mediterranean Smart Cities Conference (MSCC), 2024, pp. 1-6. http://doi.org/10.1109/MSCC62288.2024.10696996 | en |
dc.relation.references | S. Shilaskar, V. Shelke, S. Bhatlawande, P. Shinde, and K. Shintre, “Robust Criminal Identification System for Recog-nition of Obscure and Hidden Faces,”2nd International Conference on Futuristic Technologies (INCOFT), 2023, pp. 1-6. http://doi.org/ 10.1109/INCOFT60753.2023.10425451 . | en |
dc.relation.references | S. Divya, J. T, and A. V. A. Geo, “Innovative Approaches to Criminal Identification Using Real Time Facial Recogni-tion,” 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), 2025, pp. 1694-1700. http://doi.org/10.1109/ICMCSI64620.2025.10883092 | en |
dc.relation.references | S. N. Rafek, S. N. K. Kamarudin, and Y. Mahmud, “Deep Learning-Based Car Plate Number Recognition (CPR) in Videos Stream,”5th International Conference on Artificial Intelligence and Data Sciences (AiDAS), 2024, pp. 538-543. http://doi.org/10.1109/AiDAS63860.2024.10730590 | en |
dc.relation.references | W. Furong, L. Yixing, and H. Long, “An Image SVD Compression Algorithm for UAV Based on Region of Interest,” International Conference on Autonomous Unmanned Systems (ICAUS 2022), Lecture Notes in Electrical Engineering, vol. 1010. https://doi.org/10 | en |
dc.relation.references | M. Bakirci, and I. Bayraktar, “Comparative Performance of YOLOv9 and YOLOv10 for Vehicle Detection Towards Real-Time Traffic Surveillance with UAVs,”21st International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2024, pp. 1-6. http://doi.org/10.1109/CCE62852.2024.10771048 | en |
dc.relation.references | F. A. Amarcha, A. Chehri, A. Jakimi, M. Bouya, R. Ahl Laamara, and R. Saadane, “Drones Optimization for Public Transportation Safety: Enhancing Surveillance and Efficiency in Smart Cities,”IEEE World Forum on Public Safety Technology (WFPST), pp. 153-158, 2024. http://doi.org/10.1109/WFPST58552.2024.00023 | en |
dc.relation.references | A. Singh, and R. K. Tiwari, “AIGuard: Criminal Tracking in CCTV Footage Using MTCNN and ResNet,” 14th Inter-national Conference on Cloud Computing, Data Science & Engineering (Confluence), 2024, pp. 31-35. http://doi.org/10.1109/Confluence60223.2024.10463292 | en |
dc.relation.references | R. Srinivasan, D. Rajeswari, A. Arivarasi, and A. Govindasamy, “Real-Time Vehicle Classification and License Plate Recognition via Deformable Convolution-Based Yolo V8 Network,” IEEE Sensors Journal, vol. 24, no. 23, pp. 39771-39778, 2024. http://doi.org/10.1109/JSEN.2024.3453498 | en |
dc.relation.references | I. Valova, T. Kaneva, and N. Valov, “Conceptual Model of a Parking System with Automatic License Plate Recogni-tion,”IEEE 30th International Symposium for Design and Technology in Electronic Packaging (SIITME), 2024, pp. 168-173. http://doi.org/10.1109/SIITME63973.2024.10814907 . | en |
dc.relation.references | I. Tupitsya, V. Kryvonos, I. Gavura, and D. Vasiekin, “Software and hardware module for automated detection and recognition of interest objects to increase the level of processing efficiency and reliability of aerial reconnaissance data,” Automation of Technological and Business Processes, No 16 (1), pp. 61-71, 2024. https://doi.org/10.15673/atbp.v16i1.2773 | en |
dc.relation.references | H. Aljzaere, A. C. Nath, and W. Hardt, “German License Plate Recognition System Using the YoloV8 Model and EasyOCR,” IEEE CPMT Symposium Japan (ICSJ), pp. 176-179, 2024. http://doi.org/10.1109/ICSJ62869.2024.10804754 | en |
dc.relation.references | M. Bakirci, and I. Bayraktar, “The Cutting-Edge YOLO11 for Advanced Aircraft Detection in Synthetic Aperture Ra-dar (SAR) Imagery,”8th International Symposium on Innovative Approaches in Smart Technologies (ISAS), 2024, pp. 1-6. http://doi.org/10.1109/ISAS64331.2024.10845222 | en |
dc.relation.references | The updated Bayraktar TB2T-AI attack drone has artificial intelligence. Hi-tech, web site. [Electronic resource].Available: https://hi-tech.ua/en/the-updated-bayraktar-tb2t-ai-attack-drone-has-artificial-intelligence . Accessed: 25.02.2025. | en |
dc.relation.references | The new version of the Bayraktar TB2T-AI has a turbo engine and improved AI.Dev, web site. [Electronic resource].Available: https://dev.ua/en/news/rozumnyi-bairaktar-1740389540 . Accessed: 24.02.2025. | en |
dc.relation.references | Powered by articial intelligence and a turbo engine, Bayraktar TB2T-AI UCAV takes to the skies. Baykartech, web site. URL: https://baykartech.com/en/press/powered-by-articial-intelligence-and-a-turbo-engine-bayraktar-tb2t-ai-ucav-takes-to-the-skies . Accessed: 24.02.2025 | en |
dc.relation.references | Artificial intelligence. Baykartech, web site. [Electronic resource]. Available: https://baykartech.com/en/artificial-intelligence. Accessed: 10.03.2025 | en |
dc.relation.references | UAS Solutions for the Modern World.Trakkasystems, web site. [Electronic resource].Available: https://trakkasystems.com/unmanned/?utm_source=mv&utm_medium=search&utm_campaign=intent&customer_id=546-629-9909&gad_source=1&gbraid=0AAAAAood8-LhREC1K-BQmvuRsWqgK-NYw&gclid=Cj0KCQjwiLLABhCEARIsAJY S6ulbIeTxISglVgC3YJEJzhAjlb6AvXq4Fg9cBb39YGFiPsQXlRS1QuwaAmNjEALw_wcB&gclsrc=aw.ds. Accessed:24.03.2025 | en |
dc.relation.references | The Top 29 Drone Companies in 2025. Thedroneu, web site. [Electronic resource].Available: https://www.thedroneu.com/blog/top-drone-companies/. Accessed: 24.03.2025. | en |
dc.identifier.doi | https://doi.org/10.31649/1997-9266-2025-180-3-140-146 | |