Show simple item record

dc.contributor.authorРакитянська, Г. Б.uk
dc.date.accessioned2016-01-22T17:37:02Z
dc.date.available2016-01-22T17:37:02Z
dc.date.issued2015-02-10
dc.identifier.citationРакитянська Г. Б. Побудова класифікаційних нечітких правил на основі оберненого логічного виведення [Текст] / Г. Б. Ракитянська // Вісник Вінницького політехнічного інституту. - 2014. - № 6. - С. 99-107.uk
dc.identifier.issn1997-9274
dc.identifier.issn1997-9266
dc.identifier.urihttp://visnyk.vntu.edu.ua/index.php/visnyk/article/view/867
dc.identifier.urihttp://ir.lib.vntu.edu.ua/handle/123456789/4936
dc.description.abstractЗапропоновано метод побудови класифікаційних нечітких баз знань на основі нечітких відношень і оберненого логічного виведення, що дозволяє уникнути трудомістких процедур генерування і селекції експертних правил. Носієм експертної інформації є матриця нечітких відношень «причини–наслідки». Показано, що класифікаційні нечіткі правила ЯКЩО–ТО представляють множину розв’язків рівнянь нечітких відношень у вигляді сполучених нечітких термів, де міри значимостей причин і наслідків описуються нечіткими квантифікаторами. Задача побудови класифікаційних нечітких правил, яка полягає у відновленні значень вхідних змінних для заданих класів виходу, зведена до розв’язання системи рівнянь нечітких відношень за допомогою генетичного алгоритму. Кількість правил у класі дорівнює кількості розв’язків, а форма функцій належності сполучених термів у правилі визначається мірами значимостей причин.uk
dc.description.abstractПредлагается метод построения классификационных нечетких баз знаний на основе нечетких отношений и обратного логического вывода, что позволяет избежать трудоемких процедур генерирования и селекции экс­пертных правил. Носителем экспертной информации является матрица нечетких отношений «причины—следствия». Показано, что классификационные нечеткие правила ЕСЛИ–ТО представляют множество решений уравнений нечетких отношений в виде составных нечетких термов, где меры значимостей причин и следствий описываются нечеткими квантификаторами. Задача построения классификационных нечетких правил, которая заключается в восстановлении значений входных переменных для заданных классов выхода, сведена к решению системы уравнений нечетких отношений с помощью генетического алгоритма. Количество правил в классе определяется количеством решений, а форма функций принадлежности составных термов в правиле определяется мерами значимостей причин.ru
dc.description.abstractAn approach to the classifying fuzzy knowledge bases construction based on fuzzy relations and inverse logical inference, which allows avoiding the laborious procedures of the generation and selection of expert rules, is suggested in the paper. The matrix of «causes — effects» fuzzy relations is the support of the expert information. It is shown, that the classifying fuzzy IF-THEN rules represents the solution set of fuzzy relational equations in the form of the composite fuzzy terms, where causes and effects significance measures are described by fuzzy quantifiers. The problem of the classifying fuzzy rules construction, which consists of renewal the values of the input variables for the given output classes, is amounted to solving the system of fuzzy relational equations using the genetic algorithm. The number of rules in the class is defined by the number of solutions, and the form of the composite fuzzy terms membership functions in the rule is defined by the cause’s significance measures.en
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.subjectнечіткі відношенняuk
dc.subjectкласифікаційні нечіткі правилаuk
dc.subjectобернене логічне виведенняuk
dc.subjectрозв’язання системи рівнянь нечітких відношеньuk
dc.subjectсполучені нечіткі правилаuk
dc.titleПобудова класифікаційних нечітких правил на основі оберненого логічного виведенняuk
dc.title.alternativeClassifying fuzzy rules construction based on inverse logical inferenceen
dc.title.alternativeПостроение классификационных нечетких правил на основе обратного логического выводаru
dc.typeArticle
dc.identifier.udc681.5.015:007


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record