• English
    • українська
  • English 
    • English
    • українська
  • Login
View Item 
  • Frontpage
  • Факультет електроенергетики та електромеханіки
  • Кафедра загальної фізики
  • Наукові роботи каф. ЗФ
  • View Item
  • Frontpage
  • Факультет електроенергетики та електромеханіки
  • Кафедра загальної фізики
  • Наукові роботи каф. ЗФ
  • View Item
Сайт інституційного репозитарію ВНТУ містить роботи, матеріали та файли, які були розміщені докторантами, аспірантами та студентами Вінницького Національного Технічного Університету. Для розширення функцій сайту рекомендується увімкнути JavaScript.

Low computational complexity algorithm for recognition highly corrupted QR codes based on Hamming-Lippmann neural network

Author
Kvetny, R. N.
Іvanov, Yu. Yu.
Pivoshenko, V. V.
Kulyk, Y. A.
Knysh, B. P.
Smolarz, A.
Muslimov, K.
Turgynbekov, Y.
Квєтний, Р. Н.
Іванов, Ю. Ю.
Півошенко, В. В.
Кулик, Я. А.
Книш, Б. П.
Date
2019
Metadata
Show full item record
Collections
  • Наукові роботи каф. ЗФ [242]
Abstract
This article describes the architecture of the Hamming-Lippmann neural network and the math of the modified learning-recognition algorithm and presents some practical aspects for using it for solving an image recognition task. We have created software using C# programming language, that utilized this network as an additional error-correcting procedure, and have solved the task of recognition highly corrupted QR codes (with a connection to the database). Experimental results, of finding the optimal parameters for this algorithm, are presented. This neural network doesn’t require time-consuming computational procedures and large amounts of memory, even for high-resolution and big size images.
 
W tym artykule opisano architekturę sieci neuronowej Hamminga-Lippmanna oraz matematykę zmodyfikowanego algorytmu rozpoznawania uczenia się, a także przedstawiono kilka praktycznych aspektów korzystania z niej w celu rozwiązania zadania rozpoznawania obrazu. Stworzyliśmy oprogramowanie wykorzystujące język programowania C #, który wykorzystał tę sieć jako dodatkową procedurę korekty błędów i rozwiązaliśmy zadanie rozpoznawania wysoce uszkodzonych kodów QR (w połączeniu z bazą danych). Przedstawiono wyniki eksperymentalne poszukiwania optymalnych parametrów dla tego algorytmu. Opisywana neuronowa nie wymaga czasochłonnych procedur obliczeniowych i dużej ilości pamięci, nawet w przypadku obrazów o wysokiej rozdzielczości i dużych rozmiarach. (Algorytm o niskiej złożoności obliczeniowej do rozpoznawania wysoce uszkodzonych kodów QR w oparciu o sieć neuronową Hamminga-Lippmanna).
 
URI:
http://ir.lib.vntu.edu.ua//handle/123456789/24331
View/Open
Low computational complexity algorithm for recognition highly.pdf (371.4Kb)

Institutional Repository

FrontpageSearchHelpContact UsAbout Us

University Resources

JetIQLibrary websiteUniversity websiteE-catalog of VNTU

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOIThis CollectionBy Issue DateAuthorsTitlesSubjectsTypePublisherLanguageUdcISSNPublicationDOI

My Account

LoginRegister

Statistics

View Usage Statistics

ISSN 2413-6360 | Frontpage | Send Feedback | Help | Contact Us | About Us
© 2016 Vinnytsia National Technical University | Extra plugins code by VNTU Linuxoids | Powered by DSpace
Працює за підтримки 
НТБ ВНТУ