Показати скорочену інформацію

dc.contributor.authorУшенко, О. Г.uk
dc.contributor.authorПавлов, С. В.uk
dc.contributor.authorВуйцік, В. Т.uk
dc.contributor.authorКушнерик, Л. Я.uk
dc.contributor.authorЗаболотна, Н. І.uk
dc.contributor.authorУшенко, О. Ю.uk
dc.contributor.authorДуболазов, О. В.uk
dc.contributor.authorАнгельська, А. О.uk
dc.contributor.authorТомка, Ю. Я.uk
dc.contributor.authorУшенко, В. О.uk
dc.contributor.editorУшенко, О. Г.uk
dc.contributor.editorПавлов, С. В.uk
dc.contributor.editorВуйцік, В. Т.uk
dc.date.accessioned2019-11-28T09:28:07Z
dc.date.available2019-11-28T09:28:07Z
dc.date.issued2019
dc.identifier.citationМетоди і засоби поляризаційної поляриметрії біологічних тканин [Текст]. Том 1 : монографія / О. Г. Ушенко, С. В. Павлов, Вальдемар Вуйцік та ін. ; за ред. Олександра Ушенка, Сергія Павлова, Вальдемара Вуйціка. – Вінниця : ПП «ТД «Едельвейс і К», 2019. – 269 с.uk
dc.identifier.citationУшенко О. Г., Павлов С. В., Вуйцік В. Т., Кушнерик Л. Я., Заболотна Н. І., Ушенко Ю. О., Дуболазов О. В., Ангельська А. О., Томка Ю. Я., Ушенко В. О. Методи і засоби поляризаційної поляриметрії біологічних тканин. Том 1 : монографія / за редакцією Олександра Ушенка, Сергія Павлова, Вальдемара Вуйціка. Вінниця, 2019. 269 с.uk
dc.identifier.isbn978-617-7237-64-7
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/26669
dc.description.abstractМонографія присвячена розгляду питань взаємодії лазерного випромінювання з оптично-анізотропними структурами біологічних тканин. Розглянуто основні фізичні закономірності формування поляризаційно- неоднорідних об’єктних полів біологічних шарів різної морфологічної будови та фізіологічного стану. Представлена архітектура та особливості будови оптико- електронних систем поляриметричної діагностики оптично-анізотропної структури біологічних тканин. Розглянуто принципи оптичної діагностики важких системних патології органів людини. Монографія розрахована на науковців, аспірантів, студентів спеціальностей “Лазерна та оптоелектронна техніка”, “Біотехнічні та медичні апарати та системи”, “Біомедична інженерія“uk
dc.language.isouk_UAuk_UA
dc.publisherВінницький національний технічний університет; Чернівецький національний університет імені Юрія Федьковичаuk
dc.subjectоптична діагностика тканинuk
dc.subjectбіологічні тканиниuk
dc.subjectметоди оптичної діагностикиuk
dc.subjectстокс-поляметричне картографуванняuk
dc.subjectполяризаториuk
dc.subjectрак прямої кишкиuk
dc.subjectкомплексна оптична діагностикаuk
dc.subjectполяризація зображеньuk
dc.subjectтипи біологічних тканинuk
dc.titleМетоди і засоби поляризаційної поляриметрії біологічних тканинuk
dc.typeMonograph
dc.identifier.bbc22.34:5
dc.identifier.udc535. 361
dc.relation.referencesЧандрасекар С. Перенос лучистой енергии / C. Чандрасекар. – М. : Иностр. лит., 1953. – 432 c.ru
dc.relation.referencesИсимару А. Распространение и рассеяние волн в случайно- неоднородных средах. Ч.2. Многократное рассеяние, турбулентность, шероховатые поверхности и дистанционное зондирование : пер. с англ. / A. Исимару. – М. : Мир, 1981. – 318 с.ru
dc.relation.referencesVan de Hulst H. C. Light Sattering by Small Particles / H. C. Van de Hulst. – New York : Dover Publications, Ins. 1981. – 478 p.en
dc.relation.referencesТучин В. В. Исследование биотканей методами светорассеяния / В. В. Тучин // Успехи физических наук. – 1997. – Т. 167. – С. 517–539ru
dc.relation.referencesПриезжев А. В. Лазерная диагностика в биологии и медицине / А. В. Приезжев, В. В. Тучин, Л. П. Шубочкин. – М. : Наука, 1989. – 240 c.ru
dc.relation.referencesLetokhov V. S. Laser biology and medicine / V. S. Letokhov // Nature. – 1985. – vol. 316. – P. 325–328.
dc.relation.referencesBronk B.V. In vivo measure of average bacterial cell size from a polarized light scattering function /B. V. Bronk,W. P. Van de Merwe, M. Stanley // Cytometry. – 1992. – V. 13. – P. 155–162.en
dc.relation.referencesТучин В. В. Лазеры и волоконная техника в биомедицинских исследованиях / B. B. Тучин. – Саратов : Изд-во Саратов. ун-та, 1998. – 384 с.ru
dc.relation.referencesUshenko A. G. Polarization structure of scattering laser fields / A. G. Ushenko. // Optical Engineering. – 1995. – Vol. 34, № 4. – P. 1088–1093.en
dc.relation.referencesSayles R. Surface topography as a non-stationary random process / R. Sayles, T. R. Thomas // Nature. – 1978. – vol. 271. – P. 431–434.en
dc.relation.referencesChurch E. L. Relationship between surface scattering and microtopographic features / E. L. Church, H. A. Jenkinson, J. M. Zavada //Optical Engineering. – 1979. – V. 18. – P. 125–136.en
dc.relation.referencesSchmitt J. M. Use of polarized light to discriminate short-photons in a multiply scattering medium / J. M. Schmitt, A. H. Gandjibakhche, R. F. Bonnar // Applied Optics – 1992. – Vol. 31. – P. 6535–6546.en
dc.relation.referencesTuchin V. V. Light propagation in tissues with controlled optical properties / V. V. Tuchin., I. L. Maksimova, D. A. Zimnyakov [et al] / Photon propagation in tissues II / eds by D. A. Benaron, B. Chance, G. Muller – Belingham : SPIE 1996. – Vol. 2925. – P. 118–142.en
dc.relation.referencesSelected papers on tissue optics: applications in medical diagnostics and therapy / ed. by V. V. Tuchin. – Bellingham : SPIE 1994 – vol. MS102. – P. 2100.en
dc.relation.referencesУшенко О. Г. Лазерна поляриметрія світлорозсіюючих об’єктів і середовищ : дис. докт. фіз.-мат. Наук : 01.04.05 / Ушенко Олександр Григорович. – Чернівці, 2001. – 334 сuk
dc.relation.referencesUshenko A. G. Laser Polarimetry of Biological Tissue. Principles and Applications / A. G. Ushenko, V. P. Pishak // Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental and Material Science / ed by V. Tuchin. – Boston, Kluwer Academic Publishers, 2004. – P. 67.en
dc.relation.referencesАнгельский О. В. О структуре матриц преобразования лазерного излучения биофракталами / О. В. Ангельский, А. Д Архелюк, С. Б. Ермоленко, Д. Н. Бурковец // Квантовая электроника. – 1999. – Т. 29, № 2. – С. 8–11.ru
dc.relation.referencesЛазери в біології і медицині / Ушенко О. Г., Пішак В. П., Ангельський О. В., Єрмоленко С. Б. Пішак О. В., Ушенко С. А. – Чернівці : Медакадемія, 2000. – 277 с.uk
dc.relation.referencesУшенко О. Г. Лазерна поляриметрія фазово-неоднорідних об’єктів і середовищ / О. Г. Ушенко. – Чернівці : Медакадемія, 2000. – 251 с.uk
dc.relation.referencesУшенко О. Г. Лазерна поляриметрична діагностика в біології та медицині / О. Г. Ушенко, В. П. Пішак, О. В. Ангельський – Чернівці : Медакадемія, 2000. – 305 с.uk
dc.relation.referencesShuliang Jiao. Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography / Jiao Shuliang, Lihong V. Wang // Optics Letters – 2002. – vol. 27. – P. 101–103.en
dc.relation.referencesShuliang Jiao. Optical-fiber-based Mueller optical coherence tomography / Jiao Shuliang, Lihong V. Wang, Yu Wurong, George Stoica // Optics Letters. – 2003. – vol. 28. – P. 1206–1208.en
dc.relation.referencesShuliang Jiao. Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography / Jiao Shuliang, Lihong V. Wang,Yao Gang. // Optics Letters – 2000. – vol. 39. – P. 6318–6324en
dc.relation.references3еге Э. П. Особенности распространения поляризованного света в средах с сильно анизотропным рассеянием / Э. П. 3еге, Л. И. Чайковская // Журнал прикладной спектроскопии – 1986. – Т. 44, № 6. – С. 996–1005.ru
dc.relation.referencesCell and biotissue optics: application in laser diagnostics and therapy / ed. by V. V. Tuchin. – Bellingham : SPIE, 1994. – 2100 p.en
dc.relation.referencesПриезжев А. В. Лазерная микродиагностика оптических тканей глаза и форменных элементов крови / А. В. Приезжев, В. В. Тучин, Л. П. Шубочкин // Изв. АН СССР. Сер. Физическая. – 1989. – Т. 53. – С. 1490–1495.ru
dc.relation.referencesWang X. Polarized light propagation through scattering media: time- resolved Monte Carlo simulation and experiments / X. Wang, L-V. Wang, C-W Sun, C-C. Yang //Journal of Biomedical Optics. – 2003. – vol. 8. – P. 608–617.en
dc.relation.referencesWang X. Polarized light propagation through the scattering media: time- resolved Monte Carlo and experiments / X. Wang, L-V. Wang, C-W. Sun, C- C. Yang // Journal of Biomedical Optics. – 2003. – Vol. 8. – P. 608–617.en
dc.relation.referencesWang X. Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose / X. Wang, G. Yao, L. H. Wang //Applied Optics. – 2002. – Vol. 41. – P. 792–801.en
dc.relation.referencesМаксимова И. Л. Поляризационные характеристики роговой оболочки глаза / И. Л. Максимова, В. В. Тучин, Л. П. Шубочкин // Оптика и спектроскопия. – 1986. – Т. 60. – С. 801–806.ru
dc.relation.referencesМаксимова И. Л. Методы и аппаратура для лазерной диагностики в офтальмологии / И. Л. Максимова, А. П. Миронычев, С. В. Романов [и др.] // Изв. АН СССР. Сер. Физическая. – 1990. – Т. 54. – С. 1918–1923.ru
dc.relation.referencesJohnston R. G. Polarized light scattering / R. G. Johnston, S. B. Singham, G. C Salzman // Comments on molecular and cellular biophysics – 1988. – Vol. 5, № 3. – P. 171–192.en
dc.relation.referencesTuchin V. V. Lasers and fiber optics in biomedicine / V. V. Tuchin // Laser Physics. – 1993. – Vol. 3, No. 3,4. – P. 767–820, 925–950.en
dc.relation.referencesПриезжев А. В. Лазерная диагностика в биологии и медицине / А. В. Приезжев, В. В. Тучин, Л. П. Шубочкин. – М. : Наука, 1989. – 237 с.ru
dc.relation.referencesМаксимова И. Л. Матрицы рассеяния света хрусталика глаза / И. Л. Максимова, В. .В. Тучин, Л. П. Шубочкин // Оптика и спектроскопия. – 1988. – Т. 65, № 3. – С. 615–620.ru
dc.relation.referencesМаксимова И. Л. Эффекты многократного рассеяния в биообъектах при лазерной диагностике / И. Л. Максимова, С. Н. Татаринцев, Л. П. Шубочкин // Оптика и cпектроскопия. – 1992. – Т. 72. – С. 1171–1177.ru
dc.relation.referencesDreher A. W. Polarization technique measures retinal nerve fibers / A. W. Dreher, K. Reiter // Clin. Vis. Sci. – 1992. – Vol. 7. – P. 481–485.en
dc.relation.referencesГородничев Е. Е. Малоугловое многократное рассеяние света в случайно-неоднородных средах / Е. Е. Городничев, Д. Б. Рогозкин // Письма в журнале экпериментальной и теоретической физики (ЖЭТФ). – 1995. – Т. 107. – С. 209–235.ru
dc.relation.referencesIzotova V. F. Investigation of Mueller matrices of anisotropic nonhomogeneous layers in application to an optical model of the cornea / V. F. Izotova, I. L. Maksimova, I. S. Nefedov, S. V. Romanov // Applied Optics. – 1997. – Vol. 36. – P. 164–169.en
dc.relation.referencesУшенко О. Г. Лазерна поляриметрія фазово-неоднорідних об’єктів і середовищ / О. Г. Ушенко. – Чернівці : Медакадемія, 2000. – 251 с.uk
dc.relation.referencesFercher A. F. Optical coherence tomography / A. F. Fercher // J. Biomed. Opt. – 1996. – vol. 1. – P. 157–173.en
dc.relation.referencesSchmitt J. M. Optical coherence tomography (OCT): A review / J. M. Schmitt // IIEEE Journal of Selected Topics in Quantum Electronics. – 1999. – vol. 5. – P. 1205-1215.en
dc.relation.referencesMedical optical tomography: functional imaging and monitoring / eds. G. Müller, B. Chance, R. Alfano [et al.] – Bellingham : SPIE 1993. – Vol. IS11.en
dc.relation.referencesRinnenberg H. Scattering of laser light in turbid media, optical tomography for medical diagnostics / H. Rinnenberg // Inverse problem / ed H. Lübbig. – Berlin : Akademie Verlag, 1995. – P. 107–141.en
dc.relation.referencesHuang D. Optical coherence tomography / D. Huang, E. A. Swanson, C. P. Lin [et al.] // Science. – 1991. – vol. 254. – P. 1178–1181.en
dc.relation.referencesFercher A. F. In-vivo optical coherence tomography / A. F. Fercher, C. K. Hitzenberg, W. Drexler, G. Kamp, H. Sattman // Amer. J. Ophthalmol. – 1993. – vol. 116. – P. 113–114.en
dc.relation.referencesSchmitt J. M. Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering / J. M. Schmitt, A. F. Fercher, C. K. Hitzenberg [et. al.] // Physics in Medicine and Biology. – 1994. – vol. 42. – P. 1427–1439.en
dc.relation.referencesFujimoto J. G. Optical biopsy and imaging using optical coherence tomography / J. G. Fujimoto, M. E. Brezinski, G. J. Tearney[et. al]. // Nature Med. – 1995. – vol. 1. – P. 970–972.en
dc.relation.referencesTearney G. J. In-vivo endoscopic optical biopsy with optical coherence tomography / G. J. Tearney, M. E. Brezinski, B. E. Bouma [et. al] // Science. – 1997. – vol. 276. – P. 2037–2039.en
dc.relation.referencesHee M. R. Optical coherence tomography of the human retina / M. R. Hee, J. A. Izatt, E.A. Swanson // Arch. Ophthalmol. – 1995. – vol. 113. – P. 326–332.en
dc.relation.referencesBoppart S. A. Investigation of developing embryonic morphology using optical coherence tomography / S. A. Boppart, M. E. Brezinski, B. E. Bouma [et al.] // Dev. Biol. – 1996. – V. 177. – P.54–64.en
dc.relation.referencesIzatt J. A. Optical coherence tomography for biodiagnostics / J. A. Izatt, M. D. Kulkami, K. Kobayashi [at al.]. // Opt. Photon. News. – 1997. – vol. 8, No. 5. – P. 41–47, 65.en
dc.relation.referencesГeликонов В. М. Когерентная оптическая томография микронеоднородностей биотканей / В. М. Гeликонов, Г. В. Геликонов, Н. Д. Гладкова и др. // Письма ЖЭТФ. – 1995. – T. 6I. – C. 149–I53.ru
dc.relation.referencesFercher A. F. In vivo optical coherence tomography / A. F. Fercher, C. K. Hitzenberger, W. Drexler [at al.] // Amer. J. Оphthalmol. – 1993. – vol. 116, № 1. – Р. 113–114.ru
dc.relation.referencesSchmitt J. M. Subsurface imaging of living skin with optical coherence tomography / J. M. Schmitt, M. Yadlowsky, R. Bonner. // Dermatology – 1995. – vol. 191, – Р. 93–98.en
dc.relation.referencesWang R. K. High resolution optical tomographic imaging of soft biological tissues / R. K. Wang, J. B. Elder // Laser Physics. – 2002. – vol. 12. – Р. 611–616.en
dc.relation.referencesBoppart S. A. Imaging developing neural morphology using optical coherence tomography / S. A. Boppart, B. E. Bouma, M. E. Brezinski // Journal of Neuroscience Methods.– 1996. – vol. 70, №. 1. – P. 65–72.en
dc.relation.referencesDolin L. S. A theory of optical coherence tomography / L.S. Dolin // Radiophys. and Quant. Electr. – 1998. – vol. 41 – P. 850–873.en
dc.relation.referencesSchmitt J. M. Model of optical coherence tomography of heterogeneous tissue / J. M. Schmitt, A. Knuttel // Journal of the Optical Society of Americ. – 1997. № 14 – P. 1231–1242.en
dc.relation.referencesJohn S. Optical Coherence Propagation and Imaging in a Multiple Scattering Medium / S. John, Y. Yang, // J. Biomed.Opt. – 1996. – vol. l, №. 2. – P. 180 – 191.en
dc.relation.referencesGelikonov V. M. Coherent optical tomographi of microscopic inhomogeneties in biological tissues / V. M. Gelikonov, G. V. Gelikonov, R. V. Kuranov [et al.] // JETP Letters. – 1995. – vol. 61. – P. 158 – 162.en
dc.relation.referencesIzatt J. A. System Integration and Signal Processing, in Handbook of Optical Coherence Tomography / J. A. Izatt, A. M. Rollins, R. Ung-arunyawee // Marcel Dekker, Inc. / eds B. Bouma and G. Tearney/ New York. – 2002. – P. 143– 174.en
dc.relation.referencesBrezinski M. E. Optical coherence tomography: high resolution imaging in nontransparent tissue / M. E. Brezinski, J. G. Fujimoto // IEEE. J. Select. Tops Quant. Electr. – 1999. – vol. 5. – P. 1185–1192.en
dc.relation.referencesZagainova E. V. In vivo optical coherence tomography feasibility for bladder disease / E. V. Zagainova, O. S. Strelzova, N. D. Gladkova [et al.] // J. Urology.– 2002. – V. 167. –P. 1492–1497.en
dc.relation.referencesEverett M. J. Birefringence characterization of biological tissue by use of optical coherence tomography / M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva // Optics Letters. – 1998. – vol. 23.– P. 228–230.en
dc.relation.referencesBoer de J. F.Polarization effects in optical coherence tomography of various biological tissues / J. F. de Boer, S. M. Srinivas, B. H. Park [et al.] // IEEE J. Select. Top. Quant. Electr. – 1999. – vol. 5.– P. 1200–1204.en
dc.relation.referencesRoth J. E. Simplified method for polarization-sensitive optical coherence tomography / J. E. Roth, J. A. Kozak, S. Yazdanfar [et al.] // Opttics Letters. – 2001. – vol. 26. – P. 1069–1071.en
dc.relation.referencesCense B. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography/ B. Cense, T. C. Chen, B. H. Park [et al.] // J. Biomed. Opt. – 2004. – vol. 9. – P. 121–125.en
dc.relation.referencesIzatt J. A. Optical coherence microscopy in scattering media / J. A. Izatt, M. R. Hee, G. M. Owen [et al.] // Opt. Lett. – 1994. – vol. 19, №. 8. – P. 590– 592.en
dc.relation.referencesIzatt J. A.Optical coherence tomography and microscopy in gastrointestinal tissues / J. A. Izatt, M. D. Kulkarni, H.-W. Wang [et al]// IEEE Journal of Selected Topics in Quantum Electronics. – 1996. – vol. 2, №. 4. – P. 1017–1028.en
dc.relation.referencesDrexler W. In Vivo ultrahigh-resolution optical coherence tomography / W. Drexler, U. Morgner, F. X. Kartner [et al.] // Optics Letters. – 1999. – vol. 24. – P. 1221– 1223.en
dc.relation.referencesУшенко О. Г. Дослідження мікроструктури кісткової тканини у поляризованому лазерному світлі / О. Г. Ушенко, В. П. Пішак, О. В. Пішак // Медичні перспективи. – 2000. – Т. 5, № 4. – С. 3– 7.uk
dc.relation.referencesЛазерна поляризаційна морфологія біологічних тканин: статистичний і фрактальний підходи : монографія / О. Г. Ушенко, В. П. Пішак, О. А. Ангельський, Ю. О. Ушенко. – Чернівці : Колір-Друк, 2007. – 314 с.uk
dc.relation.referencesУшенко О. Г. Дослідження динаміки патологічних змін дисперсіїї та котрасту когерентних зображень кісткової тканини / О. Г. Ушенко, О. В. Пішак, В. П. Пішак // Український медичний альманах. – 2000. – Т. 3, № 4. – С. 170–173.uk
dc.relation.referencesАнгельский О. В. Рассеяние лазерного излучения мультифрактальными биоструктурами / О. В. Ангельский, А. Г. Ушенко, А. Д. Архелюк [и др.] // Опт. и спектр. – 2000. – Т. 88, № 3. – С. 495–498.uk
dc.relation.referencesAngelsky O. V. Polarization-correlation investigation of biotissue multifractal structure and diagnostics of its pathological change / O. V. Angelsky, V. P. Pishak, A. G. Ushenko // Рroc. SPIE. – 2001. – vol. 4242. – P. 201–209.en
dc.relation.referencesYermolenko S. B. Laser polarimetry tomography of biotissue pathological changes / S. B. Yermolenko, O. V. Angelsky, A. G. Ushenko [et al.] // Рroc. SPIE. – 2001. vol. 4425. – P. 117– 123.en
dc.relation.referencesAngel’sky O. V. Laser polarimetry of pathological changes in biotissues / O. V. Angel’sky, A. G. Ushenko, A. D. Arkhelyuk [et al.] // Proc. SPIE. – 2002. – Vol. 4900. – P. 1045– 1049.en
dc.relation.referencesUshenko A. G. Polarization introscopy of phase-inhomogeneous layers / A. G. Ushenko // Proc SPIE. – 2002. – vol. 4900. – P. 1323–1326.en
dc.relation.referencesUshenko Y. A. Polarization phase mapping of biological tissues: II. Skin as a transformer of vector structure of coherent radiation / Yu. A. Ushenko // Proc. SPIE. – 2004. – vol. 5477. – P. 506– 512.en
dc.relation.referencesAngelsky O. V. Polarization reconstruction of orientation structure of biological tissues birefringent architectonic nets by using their Mueller-matrix speckle-images. / O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko // Journal of Holography and Speckle. – 2005. – vol. 2. – P. 72–79.en
dc.relation.referencesYao Gang. Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography / Gang Yao, Lihong V. Wang // Optics Letters – 1999. – vol. 24. – P. 537–539.en
dc.relation.referencesJiao Shuliang. Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography / Shuliang Jiao, Gang Yao, Lihong V. Wang // Appl. Opt. – 2000. – vol. 39. – P. 6318–6324.en
dc.relation.referencesJiao Shuliang. Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography / Shuliang Jiao, Lihong V. Wang // Optics Letters. – 2002. – vol. 27. – P. 101–103.en
dc.relation.referencesWang X. Polarized light propagation through the scattering media: time-resolved Monte Carlo and experiments / X. Wang, L.- H. Wang, C.- W. Sun, C. C. Yang // Journal of Biomedical Optics – 2003. – vol. 8. – P. 608–617.en
dc.relation.referencesUshenko A. G. Polarization-correlation analysis of anisotropic structures in bone tissue for the diagnostics of patological changes / A. G. Ushenko, O. V. Angelsky, D. M. Burkovets // Оптика и спектроскопия. – 2001. – Т. 90, № 3. – С. 458–464.en
dc.relation.referencesUshenko A. G. Polarization correlometry and wavelet analysis of dynamics of changes in orientation-phase structure of tissue architechtonics /A. G. Ushenko, D. M. Burkovets // Proc. SPIE. – vol. 4705. – P. 178–185.en
dc.relation.referencesPeresunko A. P. Polarization-correlation study of biotissues such as myoma and uterine cervix / A. P. Peresunko, A. G. Ushenko, L. A. Plavyuk, Yu. A. Ushenko// Proc.SPIE. – vol. 5067. – P. 56– 63.en
dc.relation.referencesAngelsky O. V. Fractal structure of biotissues polarization properties for early diagnostics cancer changes / O. V. Angelsky, Ye. G. Ushenko, Yu. A. Ushenko, A. G. Ushenko // Proc. IEEE 6th International conference “Laser&Fiber-Optical Networks Modelling 2004”. – 2004. – P. 294–298.en
dc.relation.referencesAngelsky O. V. 2-D Stokes correlometry of biotissues images in pre- clinic diagnostics of their pre-cancer states / O. V. Angelsky, Ye. G. Ushenko, Yu. A. Ushenko, A. G. Ushenko // Proc. Nasa 2004 Photon Correlation and Scattering Conference, Amsterdam, The Netherlands. – 2004. – P. 75–77.en
dc.relation.referencesUshenko Yu. A. Polarization phase mapping of biological tissues: II. Skin as a transformer of vector structure of coherent radiation / Yu. A. Ushenko // Proc. SPIE. – 2004. – vol. 5477. – P. 506–512.en
dc.relation.referencesAngelsky O. V. 2-D Stokes correlometry of biotissues images in pre- clinic diagnostics of their pre-cancer states / O. V. Angelsky, Ye. G. Ushenko, Yu. A. Ushenko, A. G. Ushenko // Proc. Nasa 2004 Photon Correlation and Scattering Conference, Amsterdam, The Netherlands. – 2004. – P. 75–77.en
dc.relation.referencesAngelsky O. V. Fractal structure of biotissues polarization properties for early diagnostics cancer changes / O. V. Angelsky, Ye. G. Ushenko, Yu. A. Ushenko, A. G. Ushenko // Proc. IEEE 6th International conference “Laser&Fiber-Optical Networks Modelling 2004”. – 2004. – P. 294–298.en
dc.relation.referencesHazebroek H. F. Interferometric ellipsometry / H. F. Hazebroek, A. A. Holscher // J. Physics E-Scientific Instr. – 1973. – vol. 6. – P. 822–826.en
dc.relation.referencesKempe M. Comparative study of confocal and heterodyne microscopy for imaging through scattering media / M. Kempe, H. Rudolph, E. Welsch // J. Opt. Soc. Am. A. – 1996. – vol. 13, №. I. – P. 46–52.en
dc.relation.referencesUshenko Yu. A. Polarization phase mapping of biological tissues: II. Skin as a transformer of vector structure of coherent radiation / Yu. A. Ushenko // Proc. SPIE. – 2004. – vol. 5477. – P. 506–512.en
dc.relation.referencesUshenkoYu. A. Polarized cartography of biofractals / Yu. A. Ushenko // Elektronika. – 2004. – № 8–9. – P. 313–315.en
dc.relation.referencesAngelsky O. V. Investigation of 2D Mueller matrix structure of biological tissues for pre-clinical diagnostics of their pathological states / O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko [et al.] // Journal of Applied Physics – 2005. – vol. 38. – P. 4227–4235.en
dc.relation.referencesAngelsky O. V. Polarization visualization and selection of biotissue image two-layer scattering medium / O. V. Angelsky, A. G. Ushenko, D. N. Burcovets [et al]. // J. Biomed. Opt. – 2005. – vol. 10, №. 1. – P. 014010.en
dc.relation.referencesAngelsky O. V. 2-D tomography of biotissue images in pre-clinic diagnostics of their pre-cancer states / O. V. Angelsky, Yu. Y. Tomka, A. G. Ushenko [et al.] // Proc. SPIE. – 2005. – vol. 5972. – P. 158–162.en
dc.relation.referencesAngelsky O. V. Polarization-correlation mapping of biological tissue coherent images / O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko, [et al.] // Journal of Biomedical Optics – 2005. – vol. 10, №. 6. – P. 064025.en
dc.relation.referencesAngelsky O. V. Polarization reconstruction of orientation structure of biological tissues birefringent architectonic nets by using their Mueller-matrix speckle-images / O. V. Angelsky, A. G. Ushenko, Yu. A. Ushenko // Journal of Holography and Speckle. – 2005. – vol. 2. – P. 72–79.en
dc.relation.referencesUshenko Yu. A. Statistical structure of polarization-inhomogeneous images of biotissues with different morphological structures / Yu. A. Ushenko // Ukrainian Journal of Physical Optics. – vol. 6, №. 2. – P. 63–70.en
dc.relation.referencesAngelsky O. V. Fractal structure of biotissue polarization properties/ O. V. Angelsky, Yu. Y. Tomka, A. G. Ushenko [et al.] // Proc. SPIE. – 2005. – vol. 5972. – P. 163–168.en
dc.relation.referencesAngelsky O. V. Fractal structure of biotissues polarization properties for early diagnostics cancer changes / O. V. Angelsky, Ye. G. Ushenko, Yu. A. Ushenko, A. G. Ushenko // Proc. IEEE 6th International conference “Laser&Fiber-Optical Networks Modelling 2004”. – 2004. – P. 294–298.en
dc.relation.referencesКарачевцев А. О. Фур'є-стоксполяриметрія полів лінійно та циркулярно двопрпоменезаломлюючих протеїнових мереж : автореф. дис. на здобуття наук. ступеня канд. фіз.-мат. наук : спец. 01.04.05 “Оптика, лазерна фізика” / А. О. Карачевцев. – Чернівці, 2012. – 20 с.uk
dc.relation.referencesStokes polarimetry of biological tissues oncological changes /A. O. Karachevtsev; L. Y. Kushnerick; V. O. Ushenko. // Conference; 15th, Novel optical systems design and optimization; Novel optical systems design and optimization XV : 15–16 August, 2012. – San Diego; California; United States, – 2012. – P 8487–8496. – ISSN -277-786X.en
dc.relation.referencesWavelet analysis of polarization azimuths maps for laser images of myocardial tissue for the purpose of diagnosing acute coronary insufficiency /O. Ya. Vanchuliak, A.P. Peresunko, Bouzan Adel Bakko, L.Ya. Kushnerick // Tenth International Conference on Correlation Optics, edited by Oleg V. Angelsky. – 2011. – SPIE Proc. of SPIE – Vol. 8338. – P. 83381 X-1-6. – ISBN 9780819492043.en
dc.relation.referencesFourier–Stokes polarimetry of laser radiation scattered fields for diagnostics of dystrophic changes of biologicaltissues histological sections / M. P. Gorsky, L. Ya. Kushneryk, L. Yu. Tryphonyuk, M. Sidor // APPLIED OPTICS. – 2012. – Vol. 51, – № 10. – P. 170–175.en
dc.relation.referencesFourier–Stokes Polarimetry of Fields Scattered by Birefringent Biological Networks / P. O. Angelsky, M. P. Gorskii, L. Ya. Kushnerick [et al.] // Optical Memory and Neural Networks (Information Optics). – 2012, – Vol. 21. – № 4. – P. 233–241.en
dc.relation.referencesFourier analysis of blood plasma laser images phase maps in the diagnosis of cancer in human organs / T. Boychuk, A. Ushenko, L. Kushnerick [et al.] // Proc. SPIE (Applications of Digital Image Processing XXXVI). – 2013. – Vol. 8856. – P. 88562A-1–11.en
dc.relation.referencesKushnerick L. Ya. Information content of the space-frequency filtering of blood plasma layers laser images in the diagnosis of pathological changes / A. G. Ushenko, T. M. Boychuk, L. Ya. Kushnerick [et al.] // Proc. SPIE 9066, Eleventh International Conference on Correlation Optics, 90661O December 17, 2013); doi: 10.1117/12.2053778.en
dc.relation.referencesFourier-Stokes Polarimetry of Fields Scattered by Birefringence Biological Tissues / Yu. A. Usenko, P. O. Angelsky, A. V. Dubolasov, L. Ya. Kushnerick, L. B. Bodnar / 2nd International Conference on Nanotechnologies and Biomedical Engineering, Chisinau, Republic of Moldova (April 18-20, 2013) // Technical University of Moldova. – 2013. – Р. 490–493.en
dc.relation.referencesStatistical and Correlation Structure of Fourier Spectra Polarizationally Filtered Laser Images of Optically Anisotropic Biological Networks / L. Ya. Kushnerick, L. B. Bodnar, M. P. Gorskii, M. Sydor // Optical Memory and Neural Networks (Information Optics). – 2013. – Vol. 22., № 2. – P. 118–125.en
dc.relation.referencesMueller-matrix differential diagnosis of biological crystallites phase anisotropy / V. O. Ushenko, G. D. Koval, V. T. Bachinskiy, L. Ya. Kushnerick, M. Garazdiyk, M. M. Dominikov, O. V. Dronenko // Proc. SPIE 9066, Eleventh International Conference on Correlation Optics, 906621 (December 17, 2013); doi: 10.1117/12.2053863.en
dc.relation.referencesWolf E. Coherence properties of partially polarized electromagnetic radiation / E. Wolf // Nuovo Cimento. – 1959. – Vol. 13. – P. 1165–1181.en
dc.relation.referencesWiener N. Generalized harmonic analysis / N. Wiener // Acta Math. – 1930. –Vol. 55. – P. 117-258.en
dc.relation.referencesGori F. Beam coherence-polarization matrix / F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Guattari // Pure Appl. Opt. – 1998. – Vol. 7. – P. 941- 951.en
dc.relation.referencesWolf E. Unified theory of coherence and polarization of random electromagnetic beams / E. Wolf // Phys. Lett. A. – 2003. – Vol. 312. – P. 263-267.en
dc.relation.referencesTervo J. Degree of coherence for electromagnetic fields / J. Tervo, T. Setala, A. Friberg. // Opt. Express. – 2003. – Vol. 11. – P. 1137-1143.en
dc.relation.referencesMovilla J. M. Parametric characterization of non-uniformly polarized beams / J. M. Movilla, G. Piquero, R. Martínez-Herrero, P. M. Mejías // Opt. Commun. – 1998. – Vol. 149. – P. 230-234.en
dc.relation.referencesEllis J. Complex degree of mutual polarization / J. Ellis and A. Dogariu // Opt. Lett. – 2004. – Vol. 29. – P. 536-538.en
dc.relation.referencesClaudia Mujat. Statistics of partially coherent beams: a numerical analysis / Claudia Mujat, Aristide Dogariu // J. Opt. Soc. Am. A. – 2004. – Vol. 21, No. 6. – P. 1000-1003.en
dc.relation.referencesGori F. Matrix treatment for partially polarized, partially coherent beams / F. Gori // Opt. Lett. – 1998. – Vol. 23. – P. 241-243.en
dc.relation.referencesMujat M. Polarimetric and spectral changes in random electromagnetic fields / M. Mujat, A. Dogariu // Opt. Lett. – 2003. – Vol. 28. – P. 2153-2155.en
dc.relation.referencesMujat M. Correlation matrix of a completely polarized, statistically stationary electromagnetic field / M. Mujat, A. Dogariu, G. S. Agarwal // Opt. Lett. – 2004. – Vol. 29. – P. 1539-1541.en
dc.relation.referencesKorotkova O. Spectral degree of coherence of a random three- dimensional electromagnetic field / O. Korotkova, E. Wolf // J. Opt. Soc. Am. A. – 2004. – Vol. 21, No.10. – P. 2382-2385.en
dc.relation.referencesAngelsky Oleg V. Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state / Oleg V. Angelsky, Alexander G. Ushenko, Yevheniya G. Ushenko // J Biomed Opt. – 2005. – Vol. 10. No. 6 – P. 060502.en
dc.relation.referencesUshenko Ye. G. Complex Degree of Mutual Polarization of Biotissue’s Speckle-Images / Ye. G. Ushenko // Ukr. J. Phys Opt. – 2005. – Vol. 6, No. 3. – P. 104-113.en
dc.relation.referencesYuriy O. Ushenko, Yuriy Ya. Tomka, Igor Z. Misevitch, Vadim V. Istratiy and Olga I. Telenga, "Complex degree of mutual anisotropy of biological liquid crystals nets", Opt. Eng. 50, 039001 (Mar 16, 2011).en
dc.relation.referencesYu. A. Ushenko, Yu. Ya. Tomka and A. V. Dubolazov, “Complex degree of mutual anisotropy of extracellular matrix of biological tissues,” Optics and Spectroscopy 110(5), 814-819, 2011.en
dc.relation.referencesYu. A. Ushenko, Yu. Ya. Tomka, A. V. Dubolazov, O. Yu. Telenga, "Diagnostics of optical anisotropy changes in biological tissues using Müller matrix", QUANTUM ELECTRON, 2011, 41 (3), 273–277.en
dc.relation.referencesYu. A. Ushenko, O. I. Olar, A. V. Dubolazov, V. O. Balanetskaya, V. P. Unguryan, N. I. Zabolotna, B. P. Oleinichenko, “Mueller-matrix diagnostics of optical properties inherent to polycrystalline networks of human blood plasma,” Semicond. Physics, Quantum Electronics&Optoelectronics, 14(1), 98-105, 2011.en
dc.relation.referencesYu. A. Ushenko, O. I. Telenga, A. P. Peresunko and O. K. Numan, “New parameter for describing and analyzing the optical-anisotropic properties of biological tissues,” J. Innov. Opt. Health Sci. 4(3) 1-13 (2011).en
dc.relation.referencesYuriy A. Ushenko, “Investigation of formation and interrelations of polarization singular structure and Mueller-matrix images of biological tissues and diagnostics of their cancer changes,” J. Biomed. Opt. 16(6), 066006 , June 2011.en
dc.relation.referencesY. A. Ushenko, “Phase maps of polycrystalline human biological fluids networks: statistical, correlation, and fractal analysis,” Opto-electron. Rev. 19(3), 333-339, 2011.en
dc.relation.referencesY. A. Ushenko, “Wavelet analysis of polarization maps of polycrystalline biological fluids networks,” Opto-electron. Rev. 19(4), 425-434, 2011.en
dc.relation.referencesS. B. Yermolenko, C. Yu. Zenkova, A. O. Angelskaya, Polarization manifestations of correlation (intrinsic coherence) of optical fields// Applied Optics, 2008, v.47, №32.en
dc.relation.referencesY. A. Ushenko, A. O.Angelskaya, D. N. Burkovets On the interconnection between correlation and singular-optics approaches in polarization diagnostics of fields from biological tissues// Proc. SPIE. - 2008. - Vol. 7008 21 [7008-74]. – p. 1-8.en
dc.relation.referencesPolyanskii P. V., Hanson S. G., Ushenko A. G., Ushenko Y. A., A. O. Angelskaya. Topological and statistical describing inhomogeneously polarized light fields // Ukr. J. Phys.Opt. – 2007. – V. 8, No.4 – P. 217-227.en
dc.relation.referencesAngelsky O. V., Ushenko A. G., Angelskaya A. O., Ushenko Yu. A. Correlation- and singular-optical approaches in diagnostics of polarization inhomogeneity of coherent optical fields from biological tissues // Ukr.J.Phys.Opt.- 2007.- V. 8, No.2. –P. 106-123.en
dc.relation.referencesA. O. Angelskaya, Yu. A. Ushenko, Y. Ushenko, A. G Ushenko, Yu. Ya Tomka. Polarization speckle-reconstruction of biological tissues architectonics: Part 1. Polarization correlometry of birefringence architectonics: singular approach // Proc. SPIE. - 2007. - Vol. 6635, – p. 1-5.en
dc.relation.referencesA. O. Angelskaya, Yu. A. Ushenko, A. G Ushenko, A. Dubolazov, V. Istratiy, Yu. Ya Tomka. Polarization speckle-reconstruction of biological tissues architectonics; Part 2. Study of polarizing intercorrelative function of coherent images of phase-inhomogeneous layer anisotropy // Proc. SPIE. - 2007. - Vol. 6635, – p. 1-6.en
dc.relation.referencesA. O. Angelskaya, Yu. A. Ushenko, A. G Ushenko, A. Dubolazov, V. Istratiy, Yu. Ya Tomka. Polarization speckle-reconstruction of biological tissues architectonics; Part 3. Polarizing-correlative processing of images of statistical object in the problem of visualization and topology reconstruction of their phase heterogeneity // Proc. SPIE. - 2007. - Vol. 6635, – p. 1-6.en
dc.relation.referencesA. O. Agelskaya, Yu. A. Ushenko, A. G Ushenko, A. Dubolazov, V. Istratiy, Yu. Ya Tomkaю Polarization speckle-reconstruction of biological tissues architectonics; Part 4. Coherent introscopy of phase-inhomogeneous surface and layers // Proc. SPIE. - 2007. - Vol. 6635, – p. 1-5.en
dc.relation.referencesO. V. Angelsky, A. G. Ushenko, A. O. Angelskaya, Yu. A. Ushenko. Polarization correlometry of polarization singularities of biological tissues object fields // Proc. SPIE. - 2007. - Vol. 6616, – p. 1-9.en
dc.relation.referencesOleg V. Angelsky, Sergij B. Yermolenko, Claudia Yu. Zenkova, Alla O. Angelskaya On polarization manifestation of correlation (intrinsic coherence) of optical fields// Proc. SPIE. - 2009. - Vol. 7297 [729714-1]. – p. 1-5.en
dc.relation.referencesO. V. Angelsky, A. G Ushenko, Yu. A Ushenko, A. O. Angelskaya Fractal Strucrure of 2 D Mueller Matrix Images of Biotissues// Ukr. J. Phys.Opt. – 2004. – V. 6, No.1 – P. 13-23.en
dc.relation.referencesO. V.Angelsky, A. G Ushenko, Yu. A Ushenko, A. O. Angelskaya Statistical structure of 2D Stokes parameters of birefringent biotissues images// Ukr. J. Phys.Opt. – 2004. – V. 5, No.4 – P. 123-130.en
dc.relation.referencesOleg Angelsky; Alexander Ushenko; Sergej Yermolenko; Yurij Ushenko; Alexander Prydij; Yevgenija Ushenko, “Polarization singularities of biological objects speckle-fields,” Proc. SPIE Vol. 6635, 66350O, 2007.en
dc.relation.referencesYuriy A. Ushenko; Alla O. Angelskaya; Dimitry N. Burkovets, “On the interconnection between correlation and singular-optics approaches in polarization diagnostics of fields from biological tissues,” Proc. SPIE Vol. 7008, 700821, 2008.en
dc.relation.referencesO. V. Angelsky; Yu. A. Ushenko; O. I. Olar; V. V. Bachinskii, “Correlation structure of biological crystal's Jones matrices,” Proc. SPIE Vol. 7008, 70082A, 2008.en
dc.relation.referencesYu. A.Ushenko, V. T. Bachinskii, “Polarization properties of biological rough surfaces,” Proc. SPIE Vol. 7008, 700820, 2008.en
dc.relation.referencesSergey B. Yermolenko, Yurij A. Ushenko, Vadim I. Istratyy, Pavlo V. Ivashko, “Polarization selection of two-dimensional phase-inhomogeneous pathologically changed biological tissue images,” Proc. SPIE Vol. 7371, 73711I, 2009.en
dc.relation.referencesSergey Yermolenko, Yurij Ushenko, Alexander Prydiy, Stepan Guminetski, Ion Gruia, “Spectropolarimetry in singular structure biotissue images for diagnostics of their pathological changes,” Proc. SPIE Vol. 7371, 73711M, 2009.en
dc.relation.referencesI. Z. Misevitch, Yu. O. Ushenko, O. G. Pridiy, A. V.Motrich, Yu. Ya. Tomka, O. V. Dubolazov, “Investigation of singularities inherent to Mueller matrix images of biological crystals: diagnostics of their birefringent structure,” Semicond. Physics, Quantum Electronics&Optoelectronics, 12(4), 379- 390, 2009.en
dc.relation.referencesYu. O. Ushenko, Yu. Ya. Tomka, O. G. Pridiy, A. V.Motrich, O. V. Dubolazov, I. Z. Misevitch, V. V. Istratiy, “Wavelet analysis for Mueller matrix images of biological crystal networks,” Semicond. Physics, Quantum Electronics&Optoelectronics, 12(4), 391-398, 2009.en
dc.relation.referencesYu. Ya. Tomka, Yu. A. Ushenko, A. O. Karachevtcev, “Laser metrology of biological crystals singular structure,” Proc. SPIE 7388, 73881J, 2009.en
dc.relation.referencesYu. A. Ushenko, V. T. Bachinskyi, I. V. Bachinskaya, “Evolution of power spectra of biological tissues Mueller matrix images in the process of changing their birefringent structure,” Proc. SPIE 7388, 73881M, 2009.en
dc.relation.referencesYu. A. Ushenko, P. T. Popovitch, S. V. Godnyuk, “Evolution of statistic moments of 2D distributions of biological tissues Mueller matrix elements in the process of their birefringent structure changes,” Proc. SPIE 7388, 73881N, 2009.en
dc.relation.referencesYu. A. Ushenko, A. P. Peresunko, and Bozan Adel Baku, “A New Method of Mueller-Matrix Diagnostics and Differentiation of Early Oncological Changes of the Skin Derma,” Advances in Optical Technologies, vol. 2010, Article ID 952423, 9 pages, 2010.en
dc.relation.referencesOleg V. Angelsky and Yuriy A. Ushenko, “The Degree of Mutual Anisotropy of Biological Liquid Crystals Net during the Diagnostics of Human Tissues Birefringence,” Advances in Optical Technologies, vol. 2010, Article ID 321275, 9 pages, 2010.en
dc.relation.referencesOleg V. Angelsky, Yuriy A. Ushenko, Alexander V. Dubolazov, and Olha Yu. Telenha, “The Interconnection between the Coordinate Distribution of Mueller-Matrixes Images Characteristic Values of Biological Liquid Crystals Net and the Pathological Changes of Human Tissues,” Advances in Optical Technologies, vol. 2010, Article ID 130659, 10 pages, 2010.en
dc.relation.referencesFourier–Stokes Polarimetry of Fields Scattered by Birefringent Biological Networks / P. O. Angelsky, M. P. Gorskii, L. Ya. Kushnerick [et al.] // Optical Memory and Neural Networks (Information Optics). – 2012, –Vol. 21. – № 4. – P. 233–241.en
dc.relation.referencesFourier analysis of blood plasma laser images phase maps in the diagnosis of cancer in human organs /T. Boychuk, A. Ushenko, L. Kushnerick [et al.] // Proc. SPIE (Applications of Digital Image Processing XXXVI). – 2013. – Vol. 8856. – P. 88562A-1–11.en
dc.relation.referencesKushnerick L. Ya.Information content of the space-frequency filtering of blood plasma layers laser images in the diagnosis of pathological changes / A. G. Ushenko, T. M. Boychuk, L. Ya. Kushnerick [et al.]// Proc. SPIE 9066, Eleventh International Conference on Correlation Optics, 90661O December 17, 2013); doi: 10.1117/12.2053778.en
dc.relation.referencesWójcik, W., Pavlov, S., Kalimoldayev, M. (2019). Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages, https://doi.org/10.1201/ 9780429057618.en
dc.relation.referencesO.V. Dubolazov, A.G. Ushenko, Y.A. Ushenko, M.Yu. Sakhnovskiy, P.M. Grygoryshyn, N. Pavlyukovich, O.V. Pavlyukovich, V.T. Bachynskiy, S.V. Pavlov, R. Dzierzak & O. Mamyrbaev. The complex degree of coherence of the laser images of blood plasma and the diagnostics of oncological changes of human tissues/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 185-194.en
dc.relation.referencesO.V. Dubolazov, A.G. Ushenko, Y.A. Ushenko, M.Yu. Sakhnovskiy, P.M. Grygoryshyn, N. Pavlyukovich, O.V. Pavlyukovich, V.T. Bachynskiy, S.V. Pavlov, V.D. Mishalov, Z. Omiotek & O. Mamyrbaev. Laser Müller matrix diagnostics of changes in the optical anisotropy of biological tissues/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 195-203.en
dc.relation.referencesO.V. Dubolazov, A.G. Ushenko, Y.A. Ushenko, M.Yu. Sakhnovskiy, P.M. Grygoryshyn, N. Pavlyukovich, O.V. Pavlyukovich, S.V. Pavlov, V.D. Mishalov, C. Kaczmarek & A. Kalizhanova. Laser microscopy of polycrystalline human blood plasma films/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 205- 217.en
dc.relation.referencesO.M. Chepurna, V.V. Kholin, I.O. Shton, V.S. Voytsehovich, S.V. Pavlov, M.V. Lysyi, P. Kisała & Y. Amirgaliyev. Selective irradiation of superficial tumours depending on the photosensitiser fluorescence in the tissue/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 53-58.en
dc.relation.referencesV.D. Kuzovyk, A.D. Gordieiev, I.I. Burdenyuk, M. Maciejewski & S. Kalimoldayeva. Bioengineering system for professional recruiting and prediction of physiological changes in the body of extreme activities operators/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 59-66.en
dc.relation.referencesS. Kvaternuk, V. Petruk, O. Kvaternuk, O. Mokyanuk, A. Kotyra & A. Kozbakova. Mathematical modeling of change in color coordinates of superficial injuries of human soft tissues for forensic medicine/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 67-76.en
dc.relation.referencesOlexander V. Dubolazov, Alexander G. Ushenko, Sergii V. Pavlov, and etc. Degree of local depolarization of laser radiation fields sorted by multi-layer birefringence networks of protein crystals // Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High- Energy Physics Experiments 2018, 108080N; doi: 10.1117/12.2501517; https://doi.org/10.1117/12.2501517.en
dc.relation.referencesNatalia I. Zabolotna, Sergei V. Pavlov, Oleksandr V. Karas, and Vladyslava V. Sholota. Processing and analysis of images in the multifunctional classification laser polarimetry system of biological objects // Proc. SPIE 10750, Reflection, Scattering, and Diffraction from Surfaces VI, 107500N; doi: 10.1117/12.2320209.en
dc.relation.referencesVladimir V. Kholin, Oksana M. Chepurna, Sergii V. Pavlov, Waldemar Wójcik, and etc. In-vivo monitoring of oxygen saturation in murine carcinoma during PDT by diode laser light diffuse reflectance // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104453N; doi: 10.1117/12.2280980.en
dc.relation.referencesVladimir V. Kholin, Oksana M.Chepurna, Sergii V. Pavlov, and etc. Determination of oxygen saturation and photosensitizer accumulation in the tumor with the help of LED and laser diode-based irradiation sources and fiber-optics probes // PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 5/2017 . – P. 122-124.; doi:10.15199/48.2017.05.25.en
dc.relation.referencesSergii V. Pavlov, Aleksandr T. Kozhukhar, et al. Electro-optical system for the automated selection of dental implants according to their colour matching // PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 3/2017. – P. 121-124. - doi:10.15199/48.2017.03.28.en
dc.relation.referencesVladimir V. Kholin, Oksana M. Chepurna, Sergii Pavlov et al. Methods and fiber optics spectrometry system for control of photosensitizer in tissue during photodynamic therapy, Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 1003138 (September 28, 2016); doi:10.1117/12.2249259.en
dc.relation.referencesRonald H. Rovira; Stanislav Ye. Tuzhanskyy; Sergii V. Pavlov; Sergii N. Savenkov; Ivan S. Kolomiets, et al. Polarimetric characterisation of histological section of skin with pathological changes, Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100313E (September 28, 2016); doi:10.1117/12.2249373.en
dc.relation.referencesS. V. Pavlov; V. B. Vassilenko; I. R. Saldan; D. V. Vovkotrub; A. A. Poplavskaya, et al. Methods of processing biomedical image of retinal macular region of the eye, Proc. SPIE 9961, Reflection, Scattering, and Diffraction from Surfaces V, 99610X (September 26, 2016); doi:10.1117/12.2237154.en
dc.relation.referencesRonald Rovira; Marcia M. Bayas; Sergey V. Pavlov; Tatiana I. Kozlovskaya; Piotr Kisała, et al. Application of a modified evolutionary algorithm for the optimization of data acquisition to improve the accuracy of a video- polarimetric system, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 981619 (December 18, 2015); doi:10.1117/12.2229087.en
dc.relation.referencesNatalia I. Zabolotna; Sergii V. Pavlov; Kostiantyn O. Radchenko; Vladyslav A. Stasenko; Waldemar Wójcik, et al. Diagnostic efficiency of Mueller- matrix polarization reconstruction system of the phase structure of liver tissue, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 98161E (December 18, 2015); doi:10.1117/12.2229018.en
dc.relation.referencesOleg G. Avrunin; Maksym Y. Tymkovych; Sergii V. Pavlov; Sergii V. Timchik; Piotr Kisała, et al. Classification of CT-brain slices based on local histograms, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 98161J (December 18, 2015); doi:10.1117/12.2229040en
dc.relation.referencesOksana Chepurna; Irina Shton; Vladimir Kholin; Valerii Voytsehovich; Viacheslav Popov, et al. Photodynamic therapy with laser scanning mode of tumor irradiation, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 98161F (December 18, 2015); doi:10.1117/12.2229030.en
dc.relation.referencesN. I. Zabolotna; S. V. Pavlov; A. G. Ushenko; A. O. Karachevtsev; V. O. Savich, et al. System of the phase tomography of optically anisotropic polycrystalline films of biological fluids, Proc. SPIE 9166, Biosensing and Nanomedicine VII, 916616 (August 27, 2014).en
dc.relation.referencesN. I. Zabolotna; S. V. Pavlov; A. G. Ushenko; O. V. Sobko and V. O. Savich. Multivariate system of polarization tomography of biological crystals birefringence networks, Proc. SPIE 9166, Biosensing and Nanomedicine VII, 916615 (August 27, 2014); doi:10.1117/12.2061105.en
dc.relation.referencesPavlov S. V. Information Technology in Medical Diagnostics // Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.en
dc.relation.referencesetiana I. Kozlovska, Sergiy V. Pavlov. Optoelectronic means of diagnosing human pathologies associated with peripheral blood circulation // Monograph: LAP LAMBERT Academic Publishing, Beau Bassin 71504, Mauritius, 2019. – 56 Pages.en
dc.relation.referencesWójcik, W., Pavlov, S., Kalimoldayev, M. (2019). Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages, https://doi.org/10.1201/ 9780429057618en
dc.relation.referencesInformation Technology in Medical Diagnostics II // Wójcik, W., Pavlov, S., Kalimoldayev, M. (2019). London: Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages, https://doi.org/10.1201/ 9780429057618en
dc.relation.referencesO.G. Avrunin, M.Y. Tymkovych, H. Farouk Ismail Saed, A.V. Loburets, I.A. Krivoruchko, A. Smolarz & S. Kalimoldayeva. Application of 3D printing technologies in building patient-specific training systems for computing planning in rhinology / Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP.1-8.en
dc.relation.referencesK.G. Selivanova, O.G. Avrunin, S.M. Zlepko, S.V. Tymchyk, B. Pinaiev, T. Zyska & M. Kalimoldayev. Virtual training system for tremor prevention/ Information Technology in Medical Diagnostics II. CRC book, 2019 Taylor & Francis Group, London, UK, PP. 9-14.en
dc.relation.referencesT.V. Zhemchuzhkina, T.V. Nosova, V.B. Vassilenko, D.Kh. Shtofel, Y.P. Liskov, M. Duk & G. Duskazaev. Some technical propositions for electromyographical human interface device/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP.15-21.en
dc.relation.referencesO.G. Avrunin, Y.V. Nosova, N.O. Shushlyapina, A.S. Zlepko, A.I. Bezuglyi, T. Zyska & G. Ziyatbekova. Formalization of the diagnosis of olfactory disorders/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 23-29.en
dc.relation.referencesO.G. Avrunin, Y.V. Nosova, N.O. Shushlyapina, V.V. Kuzmenko, A.S. Zlepko, W. Wójcik & D. Nuradilova. Determination of the odorivector evaporation intensity during an olfactory study/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 31-38.en
dc.relation.referencesO.G. Avrunin, E. Mustetsova, S.M. Zlepko, N.I. Zabolotna, D.M. Baranovskiy, A.M. Dyvak, M. Maciejewski & A. Bazarbayeva. Possibilities of apnea diagnostics by fuzzy logic methods/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP.39-46.en
dc.relation.referencesO.V. Vysotska, Y.G. Bespalov, A.I. Pecherska, S.M. Koval, O.M. Lytvynova, A.M. Dyvak, M. Maciejewski & A. Kalizhanova. Mathematical simulation of the structure of pulsed arterial pressure relations with vascular damage factors in patients with arterial hypertension / Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 47-52.en
dc.relation.referencesO.M. Chepurna, V.V. Kholin, I.O. Shton, V.S. Voytsehovich, S.V. Pavlov, M.V. Lysyi, P. Kisała & Y. Amirgaliyev. Selective irradiation of superficial tumours depending on the photosensitiser fluorescence in the tissue/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 53-58.en
dc.relation.referencesV.D. Kuzovyk, A.D. Gordieiev, I.I. Burdenyuk, M. Maciejewski & S. Kalimoldayeva. Bioengineering system for professional recruiting and prediction of physiological changes in the body of extreme activities operators/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 59-66.en
dc.relation.referencesS. Kvaternuk, V. Petruk, O. Kvaternuk, O. Mokyanuk, A. Kotyra & A. Kozbakova. Mathematical modeling of change in color coordinates of superficial injuries of human soft tissues for forensic medicine/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 67-76.en
dc.relation.referencesV.D. Kuzovyk, O. Bulyhina, O. Ivanets, Y. Onykiienko, P.F. Kolesnic, W. Wójcik & D. Nuradilova. Complex assessment of the flight crew’s psychophysiological state/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP.77-85.en
dc.relation.referencesS.V. Pavlov, T.A. Martianova, Y.R. Saldan, Y.I. Saldan, L.V. Zagoruiko, O.Yu. Pinaieva, Z. Omiotek & K. Dassibekov. Methods and computer tools for identifying diabetes-induced fundus pathology/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 87-99.en
dc.relation.referencesY.G. Bespalov, O. Vysotska, A. Porvan, E. Linnyk, V.A. Stasenko, G.D. Doroshenko, Z. Omiotek & Y. Amirgaliyev. Information system for recognition of biological objects in the RGB spectrum range/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 101-110.en
dc.relation.referencesA.D. Cherenkov, N.G. Kosulina, S.M. Zlepko, T.A. Chernyshova, N.A. Shpakova, Z. Omiotek & M. Kalimoldayev. Diagnostics of early human tumours in microwave with UHF-sensing/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 111-117.en
dc.relation.referencesO.V. Katelyan, S.D. Himych, P.F. Kolesnic, A.S. Barylo, V.S. Pavlov, T.I. Kozlovska, M. Maciejewski & A. Kalizhanova. Study of the peripheral blood circulation of an abdominal wall using optoelectronic plethysmograph/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 119-125.en
dc.relation.referencesO.K. Nosovets, V.S. Yakymchuk, V.Y. Kotovskyi, E.M. Bairamov, V.G. Paliy, R. Dzierzak & K. Dassibekov. Prevention of complications in children in the early postoperative period after surgical treatment of the single ventricle heart/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP.127-135.en
dc.relation.referencesS.V. Kostishyn, S.M. Zlepko, M.V. Moskovko, V.V. Bychkov, H.S. Lepekhina, D. Sawicki & A. Kalizhanova. Automation equipped working place of the neurologist of a perinatal centre/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 137-144.en
dc.relation.referencesS.V. Kostishyn, D.K. Shtofel, S.V. Tymchyk, I.V. Fedosova, S.V. Yakubovska, O.Yu. Pinaieva, J. Tanaś & A. Kozbakova. Database development for the automated workplace of the perinatal neurologist/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 145- 155.en
dc.relation.referencesA.I. Povoroznyuk, A.E. Filatova, L.M. Kozak, S.V. Danilkov, O.V. Sherbakov, Z. Omiotek & M. Kalimoldayev. Formalisation of the problem of the matched morphological filtering of biomedical signals and images/ Information Technology in Medical Diagnostics II. CRC Press / Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 155-162.en
dc.relation.referencesA.I. Povoroznyuk, A.E. Filatova, A.S. Kovalenko, O.Yu. Azarkhov, N.B. Savina, O.Yu. Pinaieva, A. Smolarz, K. Gromaszek & A. Kalizhanova. Developing a mathematical model of instrumental examination of patients/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 163-171.en
dc.relation.referencesY.O. Bezsmertnyi, H.V. Bezsmertna, A.S. Barylo, V.S. Pavlov, T.I. Kozlovska, A.M. Korobov, D. Harasim & D. Nuradilova. Optoelectronic plethysmography method for evaluation of peripheral blood circulation/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 173-179.en
dc.relation.referencesT.A. Smerdova, E.L. Pirotti, M.V. Bachinsky, V.E. Krivonosov, S.M. Goncharuk, M. Maciejewski & S. Kalimoldayeva. Frequency-selective heart defibrillation model/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP.179-184.en
dc.relation.referencesO.V. Dubolazov, A.G. Ushenko, Y.A. Ushenko, M.Yu. Sakhnovskiy, P.M. Grygoryshyn, N. Pavlyukovich, O.V. Pavlyukovich, V.T. Bachynskiy, S.V. Pavlov, R. Dzierzak & O. Mamyrbaev. The complex degree of coherence of the laser images of blood plasma and the diagnostics of oncological changes of human tissues/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 185-194.en
dc.relation.referencesO.V. Dubolazov, A.G. Ushenko, Y.A. Ushenko, M.Yu. Sakhnovskiy, P.M. Grygoryshyn, N. Pavlyukovich, O.V. Pavlyukovich, V.T. Bachynskiy, S.V. Pavlov, V.D. Mishalov, Z. Omiotek & O. Mamyrbaev. Laser Müller matrix diagnostics of changes in the optical anisotropy of biological tissues/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 195-203.en
dc.relation.referencesO.V. Dubolazov, A.G. Ushenko, Y.A. Ushenko, M.Yu. Sakhnovskiy, P.M. Grygoryshyn, N. Pavlyukovich, O.V. Pavlyukovich, S.V. Pavlov, V.D. Mishalov, C. Kaczmarek & A. Kalizhanova. Laser microscopy of polycrystalline human blood plasma films/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 205- 217.en
dc.relation.referencesR.N. Kvyetnyy, O.Yu. Sofina, R. Maslii, A. Olesenko, O.A. Poplavskyy, A. Smolarz & A. Sagymbekova. Development of segment classification criteria based on the features of compression algorithms/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 219-227.en
dc.relation.referencesT.V. Zhemchuzhkina, T.V. Nosova, O.Yu. Pinaieva, W. Wójcik & A. Tergeusizova. Designing a biomedical electromyographic complex with a pain level control/ Information Technology in Medical Diagnostics II. CRC Press / Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 229-235.en
dc.relation.referencesO.A. Khorozovn, I.V. Krak, A.I. Kulias, V.S. Kasianiuk, W. Wójcik & A. Tergeusizova. Monitoring vital signs using fuzzy logic rules/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 237-243.en
dc.relation.referencesA.O. Fefelov, V.I. Lytvynenko, I.A. Lurie, V.V. Osypenko, I.M. Melnychuk, W. Wójcik & S. Kalimoldayeva. Mutation schemes of the hybrid clonal selection algorithm for the reconstruction of gene regulatory networks/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 245-253.en
dc.relation.referencesA.I. Povoroznyuk, A.E. Filatova, O.Yu. Zakovorotniy, Y.V. Kuzmenko, W. Wójcik & S. Kalimoldayeva. The functional model of instrumental examination of a patient/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 253-267.en
dc.relation.referencesS.M. Koval, E.I. Sokol, P.F. Shchapov, R.S. Tomashevskyi, O.V. Soltmann, W. Wójcik & K. Dassibekov. Classification of nonstationary cardiac signals based on their spectral and probabilistic properties/ Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 267-273.en
dc.relation.referencesS.M. Koval, I.O. Snihurska, O. Vysotska, H.M. Strashnenko, W. Wójcik & K. Dassibekov. Prognosis of essential hypertension progression in patients with abdominal obesity/ Information Technology in Medical Diagnostics II. CRC Press / Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 275-287.en
dc.relation.referencesR.H. Rovira, M.M. Bayas, J. Pastoriza, S.V. Pavlov, W. Wójcik & A. Bazarbayeva. Tele-detection system for the automatic sensing of the state of the cardiovascular functions in situ/ Information Technology in Medical Diagnostics II. CRC Press / Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 289-296.en
dc.relation.referencesI.P. Dovgan, Y.G. Shevchuk, S.Ye. Tuzhanskyi, I.V. Abramchuk, M.V. Sakhno, W. Wójcik & D. Nuradilova. Model of skin tissue heat transfer in the conditions of cryosurgical impact/ Information Technology in Medical Diagnostics II. CRC Press / Balkema book, 2019 Taylor & Francis Group, London, UK, PP.297-306.en
dc.relation.referencesO. Vlasenko, O. Chaikovska, I. Rokunets, O. Vlasenko, W. Wójcik, S.V. Pavlov & A. Bazarbayeva. Multichannel system for recording myocardial electrical activity/ Information Technology in Medical Diagnostics II. CRC Press / Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 307-314.en
dc.relation.referencesSergey I. Vyatkin, Olexander N. Romanyuk, Sergii V. Pavlov, and etc. Offsetting and blending with perturbation functions // Proc. SPIE 11045, Optical Fibers and Their Applications 2018, 110450W, 2019; doi: 10.1117/12.2522353;https://doi.org/10.1117/12.2522353.en
dc.relation.referencesSergey I. Vyatkin, Olexander N. Romanyuk, Sergii V. Pavlov, and etc. A GPU-based multi-volume rendering for medicine // Proc. SPIE 11045, Optical Fibers and Their Applications 2018, 1104513, 2019); doi: 10.1117/12.2522408; https://doi.org/10.1117/12.2522408.en
dc.relation.referencesSergey I. Vyatkin, Olexander N. Romanyuk, Sergii V. Pavlov, and etc. Offsetting and blending with perturbation functions // Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High- Energy Physics Experiments 2018, 108082Y, doi: 10.1117/12.2501694en
dc.relation.referencesLeonid I. Timchenko, Sergii V. Pavlov, and etc. Precision measurement of coordinates of power center of extended laser path images // Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 1080810; doi: 10.1117/12.2501628; https://doi.org/10.1117/12.2501628.en
dc.relation.referencesOlexiy D. Azarov, Sergii V. Pavlov, and etc. Principles of fast count in modified Fibonacci numerical system // Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 1080829, doi: 10.1117/12.2501565.en
dc.relation.referencesOlexander V. Dubolazov, Alexander G. Ushenko, Sergii V. Pavlov, and etc. Degree of local depolarization of laser radiation fields sorted by multi-layer birefringence networks of protein crystals // Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High- Energy Physics Experiments 2018, 108080N; doi: 10.1117/12.2501517; https://doi.org/10.1117/12.2501517.en
dc.relation.referencesNatalia I. Zabolotna, Sergei V. Pavlov, Oleksandr V. Karas, and Vladyslava V. Sholota. Processing and analysis of images in the multifunctional classification laser polarimetry system of biological objects // Proc. SPIE 10750, Reflection, Scattering, and Diffraction from Surfaces VI, 107500N; doi: 10.1117/12.2320209; https://doi.org/ 10.1117/12.2320209.en
dc.relation.referencesValentina K. Serkova, Sergey V. Pavlov, Valentina A. Romanava, and etc. Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104453O; doi: 10.1117/12.2280984; https://doi.org/10.1117/12.2280984.en
dc.relation.referencesYosyp R. Saldan, Sergii V. Pavlov, Dina V. Vovkotrub, Waldemar Wójcik, and etc. Efficiency of optical-electronic systems: methods application for the analysis of structural changes in the process of eye grounds diagnosis // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104450S; doi: 10.1117/12.2280977; https://doi.org/10.1117/12.2280977.en
dc.relation.referencesSergey I. Vyatkin, Sergii A. Romanyuk, Sergii V. Pavlov, and etc. Using lights in a volume-oriented rendering // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104450U; doi: 10.1117/12.2280982; https://doi.org/ 10.1117/12.2280982.en
dc.relation.referencesLeonid I. Timchenko, Sergii V. Pavlov, Waldemar Wójcik, and etc. Bio-inspired approach to multistage image processing // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104453M; doi: 10.1117/12.2280976; https://doi.org/10.1117/12.2280976.en
dc.relation.referencesVladimir V. Kholin, Oksana M. Chepurna, Sergii V. Pavlov, Waldemar Wójcik, and etc. In-vivo monitoring of oxygen saturation in murine carcinoma during PDT by diode laser light diffuse reflectance // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104453N; doi: 10.1117/12.2280980;https://doi.org/10.1117/12.2280980.en
dc.relation.referencesVladimir V. Kholin, Oksana M.Chepurna, Sergii V. Pavlov, and etc. Determination of oxygen saturation and photosensitizer accumulation in the tumor with the help of LED and laser diode-based irradiation sources and fiber-optics probes // PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 5/2017 . – P. 122-124.; doi:10.15199/48.2017.05.25.en
dc.relation.referencesSergii V. Pavlov, Aleksandr T. Kozhukhar, et al. Electro-optical system for the automated selection of dental implants according to their colour matching // PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 3/2017. – P. 121-124. - doi:10.15199/48.2017.03.28.en
dc.relation.referencesVladimir V. Kholin, Oksana M. Chepurna, Sergii Pavlov et al. Methods and fiber optics spectrometry system for control of photosensitizer in tissue during photodynamic therapy, Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 1003138 (September 28, 2016); doi:10.1117/12.2249259.en
dc.relation.referencesRonald H. Rovira; Stanislav Ye. Tuzhanskyy; Sergii V. Pavlov; Sergii N. Savenkov; Ivan S. Kolomiets, et al. Polarimetric characterisation of histological section of skin with pathological changes, Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100313E (September 28, 2016); doi:10.1117/12.2249373.en
dc.relation.referencesS. V. Pavlov; V. B. Vassilenko; I. R. Saldan; D. V. Vovkotrub; A. A. Poplavskaya, et al. Methods of processing biomedical image of retinal macular region of the eye, Proc. SPIE 9961, Reflection, Scattering, and Diffraction from Surfaces V, 99610X (September 26, 2016); doi:10.1117/12.2237154.en
dc.relation.referencesRonald Rovira; Marcia M. Bayas; Sergey V. Pavlov; Tatiana I. Kozlovskaya; Piotr Kisała, et al. Application of a modified evolutionary algorithm for the optimization of data acquisition to improve the accuracy of a video- polarimetric system, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 981619 (December 18, 2015); doi:10.1117/12.2229087.en
dc.relation.referencesNatalia I. Zabolotna; Sergii V. Pavlov; Kostiantyn O. Radchenko; Vladyslav A. Stasenko; Waldemar Wójcik, et al. Diagnostic efficiency of Mueller- matrix polarization reconstruction system of the phase structure of liver tissue, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 98161E (December 18, 2015); doi:10.1117/12.2229018.en
dc.relation.referencesOleg G. Avrunin; Maksym Y. Tymkovych; Sergii V. Pavlov; Sergii V. Timchik; Piotr Kisała, et al. Classification of CT-brain slices based on local histograms, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 98161J (December 18, 2015); doi:10.1117/12.2229040.en
dc.relation.referencesOksana Chepurna; Irina Shton; Vladimir Kholin; Valerii Voytsehovich; Viacheslav Popov, et al. Photodynamic therapy with laser scanning mode of tumor irradiation, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 98161F (December 18, 2015); doi:10.1117/12.2229030.en
dc.relation.referencesOlexander N. Romanyuk; Sergii V. Pavlov; Olexander V. Melnyk; Sergii O. Romanyuk; Andrzej Smolarz, et al. Method of anti-aliasing with the use of the new pixel model, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 981617 (December 18, 2015); doi:10.1117/12.2229013.en
dc.relation.referencesS. O. Romanyuk; S. V. Pavlov; O. V. Melnyk. New method to control color intensity for antialiasing. Control and Communications (SIBCON), 2015 International Siberian Conference. - 21-23 May 2015. - DOI: 10.1109/SIBCON.2015.7147194/http://ieeexplore.ieee.org/ abstract/document/7147194en
dc.relation.referencesN. I. Zabolotna; S. V. Pavlov; A. G. Ushenko; A. O. Karachevtsev; V. O. Savich, et al. System of the phase tomography of optically anisotropic polycrystalline films of biological fluids, Proc. SPIE 9166, Biosensing and Nanomedicine VII, 916616 (August 27, 2014).en
dc.relation.referencesN. I. Zabolotna; S. V. Pavlov; A. G. Ushenko; O. V. Sobko and V. O. Savich. Multivariate system of polarization tomography of biological crystals birefringence networks, Proc. SPIE 9166, Biosensing and Nanomedicine VII, 916615 (August 27, 2014); doi:10.1117/12.2061105.en


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію