Показати скорочену інформацію

dc.contributor.authorПавлов, С. В.uk
dc.contributor.authorСалдан, Й. Р.uk
dc.contributor.authorВовкотруб, Д. В.uk
dc.contributor.authorСалдан, Ю. Й.uk
dc.contributor.authorВасиленко, В. Б.uk
dc.date.accessioned2020-08-26T10:55:26Z
dc.date.available2020-08-26T10:55:26Z
dc.date.issued2020
dc.identifier.citationInformation technologies for the analysis of the structural changes in the process of idiopathic macular rupture diagnostics [Електронний ресурс] / С. В. Павлов, Й. Р. Салдан, Д. В. Вовкотруб [та ін.] // Матеріали XLIX науково-технічної конференції підрозділів ВНТУ, Вінниця, 27-28 квітня 2020 р. – Електрон. текст. дані. – 2020. – Режим доступу: https://conferences.vntu.edu.ua/index.php/all-frtzp/all-frtzp-2020/paper/view/9664.uk
dc.identifier.citationПавлов С. В., Салдан Й. Р., Вовкотруб Д. В., Салдан Ю. Й., Василенко В. Б. Information technologies for the analysis of the structural changes in the process of idiopathic macular rupture diagnostics. Матеріали XLIX науково-технічної конференції підрозділів ВНТУ, Вінниця, 27-28 квітня 2020 р. 2020. URI: https://conferences.vntu.edu.ua/index.php/all-frtzp/all-frtzp-2020/paper/view/9664.uk
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/30372
dc.description.abstractВ даний час відбувається розширення знань щодо розвитку патологічних змін в організмі людини, тому виникає необхідність створення сучасних інформаційних пристроїв та методів переробки біомедичної інформації, зокрема, зображень.uk
dc.description.abstractNowadays the enlargement of knowledge concerning the development of the pathologic changes in human organism oc-curs, that is why, there appears the necessity to create modern information devices and methods of the processing of bio-medical information, in particular, images.en
dc.language.isoenen
dc.publisherВНТУuk
dc.relation.ispartofМатеріали XLIX науково-технічної конференції підрозділів ВНТУ, Вінниця, 27-28 квітня 2020 р.uk
dc.relation.urihttps://conferences.vntu.edu.ua/index.php/all-frtzp/all-frtzp-2020/paper/view/9664
dc.subjectмакулярна діагностикаuk
dc.subjectтопографічне зображенняuk
dc.subjectтехнічні даніuk
dc.subjectбіомедичні образиuk
dc.subjectmacular diagnosticsen
dc.subjecttopographic imageen
dc.subjecttechnical dataen
dc.subjectbiomedical imagesen
dc.titleInformation technologies for the analysis of the structural changes in the process of idiopathic macular rupture diagnosticsen
dc.typeThesis
dc.identifier.udc004.2
dc.relation.referencesAlamouti B. Retinal thickness decreases with age: an OCT study / B. Alamouti, J. Funk // Br. J. Ophthalmol. – 2003. – Vol.87. – P.899.en
dc.relation.referencesIncreasing sampling density improves reproducibility of optical coherence tomography measurements / R. Gurses-Ozden, H.r Hon ST. Ishikawa, J.M. Liebmann [et al.] // J. Glaucoma.– 1999. – Vol.8. – P. 238-241.en
dc.relation.referencesThe Humphrey optical coherence tomography scanner: quantitative analysis and reproducibility study ol the normal human retinal nerve fibre layer / A.L. Jones, N.J. Sheen, R.V. North [et al.] // Br. J. Ophthalmol. – 2001. – Vol.85. – P.673.en
dc.relation.referencesMeasurement of the magnitude and axis of corneal polarization with scanning laser polarimetry / R. N. Weinreb, C. Bowd, D. S. Greenfield, L. M. Zangwill // Arch. Ophthalmol. – 2002. – Vol.120. – P.901-906.en
dc.relation.referencesConfocal scanning laser ophthalmoscopy classiliers and stereophotograph evaluation for prediction of visual field ab-normalities in glaucoma-suspect eyes / С. Bowd, L. M. Zangwill, F. A. Medeiros [et al.] // Invest. Ophthalmol. Vis. Sci. – 2004. – Vol.45. – P.2255-2262.en
dc.relation.referencesScanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes / Н. Bagga, D. S. Greenfield, W. Feuer, R. W. Knighton // Am. J. Ophthalmol. – 2003. – Vol.135. – P.521-529.en
dc.relation.referencesBagga H. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease / H. Bagga, D. S. Greenfield, R.W. Knighton // Invest. Ophthalmol. Vis. Sci. – 2003. – Vol.44. – P. 1969-1976.en
dc.relation.referencesNormative retardation data corrected lor the corneal polarization axis with scanning laser polarimetry / D. S. Greenfield, R.W. Knighton, W.J. Feuer, J.C. Schiffman // Ophthalmic. Surg. Lasers. Imaging. – 2003. – Vol.34. – P. 165-171.en
dc.relation.referencesZhou Q. Individualized compensation of anterior segment birefringence during scanning laser polarimetry / Q. Zhou, R.N. Weinreb // Invest. Ophthalmol. Vis. Sci. – 2002. – Vol.43. – P.2221-2228.en
dc.relation.referencesBowd C. Association between scanning laser polarimetry measurements using variable corneal polarization com-pensation and visual field sensitivity in glaucomatous eyes / C. Bowd, L.M. Zangwill, R.N. Weinreb //Arch. Ophthal-mol. – 2003. – Vol. 121. – P.961-966.en
dc.relation.referencesAlamouti B. Retinal thickness decreases with age: an OCT study / B. Alamouti, J. Funk // Br. J. Ophthalmol. – 2003. – Vol.87. – P.899.en
dc.relation.referencesPavlov S.V. Methods and computer tools for identifying diabetes-induced fundus pathology // S.V. Pavlov, T.A. Martianova, Y.R. Saldan, and etc. // Information Technology in Medical Diagnostics II. CRC Press, Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 87-99.en
dc.relation.referencesPavlov S.V. Tele-detection system for the automatic sensing of the state of the cardiovascular functions in situ // R.H. Rovira, S.V. Pavlov, W. Wójcik and etc. // Information Technology in Medical Diagnostics II. CRC Press / Balkema book, 2019 Taylor & Francis Group, London, UK, PP. 289-296.en
dc.relation.referencesSergey I. Vyatkin, Olexander N. Romanyuk, Sergii V. Pavlov, and etc. Offsetting and blending with perturbation functions // Proc. SPIE 11045, Optical Fibers and Their Applications 2018, 110450W, 2019; doi: 10.1117/12.2522353en
dc.relation.referencesSergey I. Vyatkin, Olexander N. Romanyuk, Sergii V. Pavlov, and etc. A GPU-based multi-volume rendering for medicine // Proc. SPIE 11045, Optical Fibers and Their Applications 2018, 1104513, 2019); doi: 10.1117/12.2522408.en
dc.relation.referencesSergey I. Vyatkin, Olexander N. Romanyuk, Sergii V. Pavlov, and etc. Offsetting and blending with perturbation functions // Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 108082Y, doi: 10.1117/12.2501694;en
dc.relation.referencesLeonid I. Timchenko, Sergii V. Pavlov, and etc. Precision measurement of coordinates of power center of extended laser path images // Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, 1080810; doi: 10.1117/12.2501628; https://doi.org/10.1117/12.2501628.en
dc.relation.referencesYosyp R. Saldan, Sergii V. Pavlov, Dina V. Vovkotrub, Waldemar Wójcik, and etc. Efficiency of optical-electronic systems: methods application for the analysis of structural changes in the process of eye grounds diagnosis // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104450S; doi: 10.1117/12.2280977; https://doi.org/10.1117/12.2280977.en
dc.relation.referencesSergey I. Vyatkin, Sergii A. Romanyuk, Sergii V. Pavlov, and etc. Using lights in a volume-oriented rendering // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experi-ments 2017, 104450U; doi: 10.1117/12.2280982; https://doi.org/10.1117/12.2280982.en
dc.relation.referencesLeonid I. Timchenko, Sergii V. Pavlov, Waldemar Wójcik, and etc. Bio-inspired approach to multistage image pro-cessing // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Phys-ics Experiments 2017, 104453M; doi: 10.1117/12.2280976;en
dc.relation.referencesS. V. Pavlov; V. B. Vassilenko; I. R. Saldan; D. V. Vovkotrub; A. A. Poplavskaya, et al.Methods of processing bio-medical image of retinal macular region of the eye, Proc. SPIE 9961, Reflection, Scattering, and Diffraction from Sur-faces V, 99610X (September 26, 2016); doi:10.1117/12.2237154; Іndex SNIP – 0,37. http://dx.doi.org/10.1117/12.2237154en
dc.relation.referencesOlexander N. Romanyuk; Sergii V. Pavlov; Olexander V. Melnyk; Sergii O. Romanyuk; Andrzej Smolarz, et al. Method of anti-aliasing with the use of the new pixel model, Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 981617 (December 18, 2015); doi:10.1117/12.2229013; Іndex SNIP – 0,37. http://dx.doi.org/10.1117/12.2229013en
dc.relation.referencesS. O. Romanyuk; S. V. Pavlov; O. V. Melnyk. New method to control color intensity for antialiasing. Control and Communications (SIBCON), 2015 International Siberian Conference. - 21-23 May 2015. - DOI: 10.1109/SIBCON.2015.7147194.en


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію