dc.contributor.author | Kupershtein, L. | en |
dc.contributor.author | Martyniuk, T. | en |
dc.contributor.author | Voitovych, O. | en |
dc.contributor.author | Borusevych, A. | en |
dc.contributor.author | Куперштейн, Л. М. | uk |
dc.contributor.author | Мартинюк, Т. Б. | uk |
dc.contributor.author | Войтович, О. П. | uk |
dc.contributor.author | Борисевич, А. | uk |
dc.date.accessioned | 2023-07-17T09:00:33Z | |
dc.date.available | 2023-07-17T09:00:33Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Remote Host Operation System Type Detection Based on Machine Learning Approach [Text] / L. Kupershtein, T. Martyniuk, O. Voitovych, A. Borusevych // Selected Papers of the II International Scientific Symposium "Intelligent Solutions" (IntSol-2021), Kyiv - Uzhhorod, September 28-30 2021. – 2021. – № 3106. – Р. 65–81. | en |
dc.identifier.uri | http://ir.lib.vntu.edu.ua//handle/123456789/37675 | |
dc.description.abstract | There are the research results of using machine learning to solve the problem of the remote
host operating system detection in the article. The analysis of existing methods and means of
detection of the remote host operating system are carried out, the main advantages and
disadvantages of their using are defined. Modeling of machine learning methods is carried out.
The software architecture is designed and experimental application is developed. It uses a
trained machine learning model that allows detecting the type and version of operating system
with high accuracy. | en |
dc.language.iso | en | en |
dc.publisher | Київський національний університет імені Тараса Шевченка | uk |
dc.relation.ispartof | Selected Papers of the II International Scientific Symposium "Intelligent Solutions" (IntSol-2021), Kyiv - Uzhhorod, September 28-30 2021. № 3106 : 65–81. | en |
dc.subject | Operating system detection | en |
dc.subject | machine learning | en |
dc.subject | computer networks | en |
dc.subject | network protocol | en |
dc.subject | scanning | en |
dc.title | Remote Host Operation System Type Detection Based on Machine Learning Approach | en |
dc.type | Article | |
dc.identifier.orcid | https://orcid.org/0000-0001-6737-7134 | |
dc.identifier.orcid | https://orcid.org/0000-0001-8964-7000 | |
dc.identifier.orcid | https://orcid.org/0000-0001-9952-9438 | |