Показати скорочену інформацію

dc.contributor.authorMamyrbayev, Orkenen
dc.contributor.authorPavlov, Sergiien
dc.contributor.authorBekarystankyzy, Akbayanen
dc.contributor.authorOralbekova, Dinaen
dc.contributor.authorZhumazhanov, Bagasharen
dc.contributor.authorAzarova, Larysaen
dc.contributor.authorMussayeva, Dinaraen
dc.contributor.authorKoval, Tetianaen
dc.contributor.authorGromaszek, Konraden
dc.contributor.authorIssimov, Nurdauleten
dc.contributor.authorShiyapov, Kadrzhanen
dc.contributor.authorПавлов, С. В.uk
dc.contributor.authorАзарова, Л. Є.uk
dc.date.accessioned2024-04-11T09:58:44Z
dc.date.available2024-04-11T09:58:44Z
dc.date.issued2023
dc.identifier.citationMamyrbayev O., Pavlov S., Oralbekova D., Zhumazhanov B., Azarova L., Mussayeva D., Koval T., Gromaszek K., Issimov N., Shiyapov K. Neurorecognition visualization in multitask end-to-end speech. Proc. SPIE 12985. Optical Fibers and Their Applications 2023. Vol. 12985. 129850G1-8. DOI: https://doi.org/10.1117/12.3022727.en
dc.identifier.issn0277-786X
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/41441
dc.description.abstractNowadays, speech-processing technologies with different language systems are successfully used in mobile and stationary devices. Kazakh is considered a low-resource language, which poses various challenges for conventional speech recognition methods. This paper presents a proposed model capable of multitasking and handling concurrent speech recognition, dialect identification, and speaker identification, all in an end-to-end framework. The developed multitask model enables training three different tasks within a single model. A multitask recognition system is created based on the WaveNet-CTC model. Experiments show that for the concrete task end-to-end multitask model has better performance than other models..en
dc.language.isoenen
dc.publisherSociety of Photo-Optical Instrumentation Engineersen
dc.relation.ispartofProc. SPIE 12985. Optical Fibers and Their Applications 2023. Vol. 12985. 129850G1-8.en
dc.subjectend-to-enden
dc.subjectmultitask trainingen
dc.subjectspeech recognitionen
dc.subjectspeaker identificationen
dc.subjectdialect identificationen
dc.titleNeurorecognition visualization in multitask end-to-end speechen
dc.typeArticle
dc.identifier.doihttps://doi.org/10.1117/12.3022727


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію