dc.contributor.author | Бікс, Ю. С. | uk |
dc.contributor.author | Ратушняк, О. Г. | uk |
dc.contributor.author | Biks, Y. | en |
dc.contributor.author | Ratushnyak, O. | en |
dc.date.accessioned | 2024-04-30T13:58:14Z | |
dc.date.available | 2024-04-30T13:58:14Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Бікс Ю. С., Ратушняк О. Г. Layer thickness optimisation of multilayered envelope. Матеріали LІII науково-технічної конференції підрозділів ВНТУ, Вінниця, 20-22 березня 2024 р. Електрон. текст. дані. 2024. URI: https://conferences.vntu.edu.ua/index.php/all-fbtegp/all-fbtegp-2024/paper/view/20986. | uk |
dc.identifier.uri | https://ir.lib.vntu.edu.ua//handle/123456789/42189 | |
dc.description.abstract | The thermal performance criteria CTP has been proposed as the assessment parameter, which could be considered
when the decision-making demand for the energy-efficient multilayered wall assembly comes into the picture. As the
parameters of the proposed criteria CTP, the wall width, wall mass and wall’s internal areal heat capacity were used. The
current paper mainly emphasises the proposal of criteria which depend on physical characteristics only. The “best” wall
assessed by CTP criteria was made of 375 mm AAC D300 Rockwool insulated wall, and the “worst” wall assembly was
Wall type C for 1300 kg/m3 brickwall masonry + Rockwool as insulation material. Additional influence factors and verification and results validation should be provided when comparing criteria and assessment methods. | en |
dc.language.iso | en | en |
dc.publisher | ВНТУ | uk |
dc.relation.ispartof | Матеріали LІII науково-технічної конференції підрозділів ВНТУ, Вінниця, 20-22 березня 2024 р. | uk |
dc.relation.uri | https://conferences.vntu.edu.ua/index.php/all-fbtegp/all-fbtegp-2024/paper/view/20986 | |
dc.subject | thermal performance | uk |
dc.subject | wall assemblies | uk |
dc.subject | the best alternative | uk |
dc.title | Layer thickness optimisation of multilayered envelope | en |
dc.type | Thesis | |
dc.identifier.udc | 621.3.088 | |
dc.relation.references | Basińska M. The use of multicriteria optimisation to choose solutions for energy-efficient buildings. Bulletin of the Polish
Academy of Sciences. Technical Sciences. 2017. Vol. 65, №. 6. P. 815-826. DOI: 10.1515/bpasts-2017-0084. | en |
dc.relation.references | Wang J. J., Jing Y. Y., Zhang C. F., Zhao J. H. Review on multicriteria decision analysis aid in sustainable energy decisionmaking. Renewable and sustainable energy reviews. 2009. Vol. 13. №9. Р. 2263-2278. DOI: 10.1016/j.rser.2009.06.021. | en |
dc.relation.references | Stazi F. Thermal Inertia in Energy Efficient Building Envelopes. Butterworth-Heinemann, 2017. DOI: 10.1016/B978-0-12-
813970-7.00001-7. | en |
dc.relation.references | Biks Y., Ratushnyak G., Ratushnyak, O. Energy performance assessment of envelopes from organic materials. Architecture
Civil Engineering Environment. 2019. № 3: P. 55-67. DOI: 0.21307/ACEE-2019-036. | en |
dc.relation.references | Thakkar J. J. Multicriteria Decision Making. Springer, 2021. Vol. 336. P. 1-365. | en |
dc.relation.references | DSTU-N. B. V. 2.6-189:2013. Methods for the selection of heat-insulating material for the insulation of buildings. [Valid from
2014-01-01]. Official issue Kyiv: Ministry of Region of Ukraine, 2014. 40 p. (in Ukrainian). | en |
dc.relation.references | DBN V. 2.6-31:2021. Thermal insulation of buildings. [Valid from 2022-09-01]. Official issue Kyiv: Ministry of Region of
Ukraine, 2022. 27 p. (in Ukrainian). | en |
dc.relation.references | A brief guide and free tool for the calculation of the thermal mass of building components. URL:
https://www.htflux.com/en/free-calculation-tool-for-thermal-mass-of-building-components-iso-13786/ (Last accessed:
18.11.2023) | en |
dc.relation.references | ISO 13786:2017. Thermal performance of building components ‒ Dynamic thermal characteristics ‒ Calculation methods.
URL: https://www.iso.org/ru/standard/65711.html (Last accessed: 10.10.2020). | en |
dc.relation.references | ROSSI, Monica; ROCCO, Valeria Marta. External walls design: The role of periodic thermal transmittance and internal areal
heat capacity. Energy and buildings, 2014. Vol. 68. P. 732-740. | en |
dc.relation.references | GAGLIANO, Antonio, et al. Assessment of the dynamic thermal performance of massive buildings. Energy and Buildings,
2014, Vol. 72. P. 361-370. | en |
dc.relation.references | BALAJI, N. C.; MANI, Monto; REDDY, BV Venkatarama. Dynamic thermal performance of conventional and alternative
building wall envelopes. Journal of building engineering, 2019, Vol. 21. P. 373-395 | en |
dc.relation.references | DBN V. 2.6-31:2006. Thermal insulation of buildings. [Valid from 2007-01-01]. Official issue Kyiv: Ministry Of Construction, Architecture And Housing And Communal Of Ukraine, 2006. 73 p. (in Ukrainian). | en |
dc.relation.references | Porotherm. Wall solutions. URL: https://porotherm.com.ua/pdf/Porotherm_Klima.pdf (Last accessed: 22.03.2024) (in Ukrainian). | en |