Показати скорочену інформацію

dc.contributor.authorMaidanevych, L.uk
dc.contributor.authorKondratenko, N.uk
dc.contributor.authorKazmirevskyi, V.uk
dc.contributor.authorМайданевич, Л. О.uk
dc.date.accessioned2025-03-12T14:31:57Z
dc.date.available2025-03-12T14:31:57Z
dc.date.issued2024uk
dc.identifier.citationMaidanevych L., Kondratenko N., Kazmirevskyi V. Optimising fuzzy hash function parameters for ensuring compliance with Open Data Regulations // Інформаційні технології та комп’ютерна інженерія. 2024. № 3. С. 65-76.uk
dc.identifier.issn1999-9941uk
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/44531
dc.description.abstractThe aim of this study was to investigate the parameters of the hash function to enhance the efficiency and accuracy of detecting similarities in text fragments across various web resources when monitoring compliance with the requirements of the Regulation on Open Data on official government websites. The research focused on assessing three key parameters of the hash function: block size, prime number base, and modulus. To achieve this, a series of experiments was conducted, employing different combinations of these parameters to generate hash values for text data. The results demonstrated which parameter combinations provide the best balance between accuracy, completeness, F-measure, and execution time. The study showed that specific parameter configurations enable a significant improvement in algorithm accuracy while minimising computational costs, which is particularly important for real-time data analysis. It is established that optimising the parameters of the hash function reduces the occurrence of false positives and false negatives, which are common issues in similarity detection. In particular, selecting optimal values for each parameter significantly enhances the accuracy and completeness of the analysis, leading to more precise text fragment comparisons and reduced execution time. This optimisation makes the fuzzy hashing algorithm well-suited for use in automated systems that monitor government websites for compliance with open data regulations. Furthermore, the study found that parameter optimisation decreases the number of duplicate records, which is especially relevant for ensuring that open data adheres to legislative requirements. The conclusions drawn from this research can be applied to the development of software tools designed to efficiently identify deficiencies and improve transparency and legal compliance. Additionally, the findings can contribute to further optimisation of fuzzy hash function algorithms, thereby advancing data monitoring technologies for regulatory compliance. This study enhances the development of web resource monitoring technologies by demonstrating how the careful selection of fuzzy hash function parameters can substantially improve the efficiency and reliability of open data analysisuk_UA
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofІнформаційні технології та комп’ютерна інженерія. № 3 : 65-76.uk
dc.subjectfuzzy hash function parametersuk
dc.subjectwebsite monitoringuk
dc.subjectgovernment electronic resourcesuk
dc.subjectalgorithm accuracyuk
dc.subjectoptimization parametersuk
dc.subjectsimilarity detectionuk
dc.subjectviolation of provisionsuk
dc.titleOptimising fuzzy hash function parameters for ensuring compliance with Open Data Regulationsuk
dc.typeArticle, professional native edition
dc.identifier.udc004.8uk
dc.identifier.doi10.31649/1999-9941-2024-61-3-65-76uk
dc.identifier.orcidhttps://orcid.org/0000-0002-7364-8874uk
dc.identifier.orcidhttps://orcid.org/0000-0002-4450-1603uk
dc.identifier.orcidhttps://orcid.org/0009-0005-4056-5385uk


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію