Показати скорочену інформацію

dc.contributor.authorPoplavskyi, Oleksandren
dc.contributor.authorPavlov, Sergiyen
dc.contributor.authorDenysiuk, Valeriien
dc.contributor.authorBelinska, Svitlanaen
dc.contributor.authorShvarts, Irynaen
dc.contributor.authorAkimova, Olgaen
dc.contributor.authorKornilenko, Oleksandren
dc.contributor.authorTarczyńska, Martaen
dc.contributor.authorGawęda, Krzysztofen
dc.contributor.authorKozbakova, Ainuren
dc.contributor.authorSmolarz, Andrzejen
dc.contributor.authorПавлов, С. В.uk
dc.contributor.authorДенисюк, В. О.uk
dc.contributor.authorШварц, І. В.uk
dc.date.accessioned2025-07-01T07:59:04Z
dc.date.available2025-07-01T07:59:04Z
dc.date.issued2024
dc.identifier.citationPoplavskyi O., Pavlov S., Denysiuk V., Belinska S., Shvarts I., Akimova O., Kornilenko O., Tarczyńska M., Gawęda K., Kozbakova A., Smolarz A. High-performance information technology for processing large datasets and biomedical images to improve the accuracy of computer-aided decision support systems // Proc. SPIE 13400 «Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2024», 16 December 2024. 2024. 134000E. DOI: https://doi.org/10.1117/12.3057444/en
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/46744
dc.description.abstractModern biomedical engineering is characterized by the rapid growth of data volumes that require processing and analysis to support clinical decision-making. Information technology plays a key role in ensuring the high-performance processing of these large datasets, contributing to the increased accuracy and speed of clinical diagnoses, as well as more effective subsequent patient treatment. This article aims to review current approaches and technologies used for biomedical data processing and to rethink the approach to using big data in decision support systems. Special attention is given to machine learning methods that enhance data analysis efficiency. The data processing approach proposed in this article allows for an 10-12% increase in the accuracy of spinal pathology classification, confirming its feasibility in medical practice.en
dc.language.isoenen
dc.publisherSociety of Photo-Optical Instrumentation Engineersen
dc.relation.ispartofProc. SPIE 13400, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2024, 134000E (16 December 2024)en
dc.subjectbig dataen
dc.subjectbiomedical engineeringen
dc.subjectintelligent decision support systemsen
dc.subjectmachine learningen
dc.subjectpathology classificationen
dc.subjecthigh performanceen
dc.titleHigh-performance information technology for processing large datasets and biomedical images to improve the accuracy of computer-aided decision support systemsen
dc.typeArticle, Scopus-WoS
dc.typeArticle
dc.identifier.doihttps://doi.org/10.1117/12.3057444


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію