Show simple item record

dc.contributor.authorVarshney, Sh.en
dc.contributor.authorPanda, K. P.en
dc.contributor.authorShah, М.en
dc.contributor.authorSrinivas, B. A.en
dc.contributor.authorDeshmukh, А.en
dc.contributor.authorChoudhary, K. K.en
dc.contributor.authorBajaj, М.en
dc.contributor.authorProkop, L.en
dc.contributor.authorRubanenko, О.en
dc.contributor.authorРубаненко, О.uk
dc.date.accessioned2025-09-01T10:02:54Z
dc.date.available2025-09-01T10:02:54Z
dc.date.issued2025
dc.identifier.citationVarshney Sh., Panda K. P., Shah M, Srinivas, B. A., Deshmukh, А., Choudhary, K. K., Bajaj, М., Prokop, L., Rubanenko, О. Novel control strategies for electric vehicle charging stations using stochastic modeling and queueing analysis // Scientific Reports. 2025. Vol. 15, № 21391. DOI: https://doi.org/10.1038/s41598-025-04725-7.en
dc.identifier.issn2045-2322
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/48965
dc.description.abstractThis study presents a comprehensive analytical framework for modeling electric vehicle (EV) charging infrastructures through a stochastic queueing-theoretic approach that explicitly incorporates critical customer behavioral dynamics. The proposed model addresses key phenomena often overlooked in classical frameworks, including customer impatience (reneging), balking behavior, feedback mechanisms, and state-dependent service threshold policies, within a finite-population, multiple-server environment. These behavioral elements reflect realistic operational scenarios in which users may opt not to join extended queues, abandon the system due to excessive delays, or return for service completion based on prior dissatisfaction. The system dynamics are formulated using a continuous-time Markov chain (CTMC), and the corresponding Chapman-Kolmogorov differential equations are derived to characterize state transitions. Employing a matrix-analytic solution technique, the steady-state probability distribution is obtained, enabling the computation of multiple performance metrics such as system occupancy, server utilization, abandonment rates, and throughput. Numerical simulations validate the model`s applicability and highlight intricate interdependencies among customer tolerance thresholds, service quality levels, and operational performance indicators. The findings offer valuable insights into capacity planning, congestion control, and service optimization, providing a rigorous decision-support framework for the design and management of EV charging networks under uncertain and dynamic user behavior. The study also outlines practical managerial implications and suggests directions for future research to enhance the adaptability and efficiency of smart charging infrastructures.uk
dc.language.isoen_USen_US
dc.publisherSpringer Natureen
dc.relation.ispartofScientific Reports. 2025. Vol. 15, № 21391.en
dc.relation.urihttps://www.nature.com/articles/s41598-025-04725-7citeas
dc.subjectBalking behavioren
dc.subjectCustomer impatienceen
dc.subjectElectric vehicle infrastructureen
dc.subjectFeedback mechanismen
dc.subjectFinite-population modelen
dc.subjectMulti-server queueingen
dc.subjectService threshold policyen
dc.subjectStochastic modelingen
dc.titleNovel control strategies for electric vehicle charging stations using stochastic modeling and queueing analysisen
dc.typeArticle, Scopus-WoS
dc.typeArticle
dc.identifier.doihttps://doi.org/10.1038/s41598-025-04725-7
dc.identifier.orcid0000-0002-2660-182X


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record