Аналіз використання штучного інтелекту для автоматизації процесів управління інфраструктурою підприємства
Author
Коваленко, В. П.
Ковалюк, О. О.
Date
2025Metadata
Show full item recordCollections
- JetIQ [304]
Abstract
This paper research the application of artificial intelligence (AI) for automating enterprise infrastructure management processes. The
increasing complexity of IT systems and the volume of operational data have rendered traditional monitoring and control approaches inefficient.
In response, AI-driven solutions — particularly those involving machine learning (ML), deep learning (DL), and natural language processing
(NLP) — have emerged as effective tools for enhancing reliability, adaptability, and operational efficiency. The study focuses on three core areas
of AI integration: resource monitoring and optimization, automation of technical support, and intelligent document processing. In resource
management, ML/DL algorithms outperform rule-based systems in anomaly detection, load forecasting, and fault prevention. The use of deep
reinforcement learning enables adaptive resource allocation and improved fault tolerance in dynamic environments. In technical support, NLPbased chatbots can classify tickets, generate automated responses, and self-improve over time, significantly reducing mean time to resolution and
enhancing user satisfaction. Intelligent document management systems, powered by neural networks and hybrid semantic-rule-based approaches,
support automated classification, data extraction, and compliance checking in real time. To guide AI adoption, a structured methodology is
proposed, comprising stakeholder identification, resource and data flow analysis, model selection, and staged integration. The paper introduces
the concept of AI as a full-fledged participant in business processes rather than a passive tool. Within the Augmented Intelligence paradigm, AI
agents and human experts collaborate—combining algorithmic precision with ethical reasoning and creativity. The practical implementation could
demonstrate that AI integration leads to measurable improvements in efficiency, responsiveness, and decision quality across infrastructure-related
workflows. Furthermore, it fosters a shift toward cognitive enterprise models, in which AI agents continuously learn and adapt to evolving business
requirements. The findings offer a foundation for future research on human-AI collaboration, organizational transformation, and intelligent process
design. У статті проаналізовано можливості використання штучного інтелекту (ШІ) для автоматизації процесів
управління інфраструктурою підприємства. Розглянуто ключові напрями впровадження ШІ: моніторинг ІТ-ресурсів,
автоматизація технічної підтримки та інтелектуальне управління документообігом. Запропоновано алгоритм аналізу
бізнес-процесів та впровадженні систем на основі ШІ. Особливу увагу приділено розгляду ШІ-агентів як учасників бізнеспроцесів.
URI:
https://ir.lib.vntu.edu.ua//handle/123456789/50330

