Показати скорочену інформацію

dc.contributor.authorДіхтярук, І. І.uk
dc.contributor.authorЗабегалов, І. В.uk
dc.contributor.authorПільтяй, С. І.uk
dc.contributor.authorБулашенко, А. В.uk
dc.date.accessioned2025-03-18T14:25:51Z
dc.date.available2025-03-18T14:25:51Z
dc.date.issued2021
dc.identifier.citation[Електронний ресурс] / І. І. Діхтярук, І. В. Забегалов, С. І. Пільтяй, А. В. Булашенко // Тези доповідей Всеукраїнської науково-практичної Інтернет-конференції студентів, аспірантів та молодих науковців «Молодь в науці: дослідження, проблеми, перспективи» (МН-2021), м. Вінниця, 01-14 травня 2021 р. – Електрон. текст. дані. – 2021. – Режим доступу: https://conferences.vntu.edu.ua/index.php/mn/mn2021/paper/view/13135.uk
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/45448
dc.description.abstractЗапропоновано модель аналізу, що забезпечує важливу інформацію про відомості о статистці необхідного інтернет-трафіку у перспективних мережах 6G. Робота запропонованої моделі ґрунтується на тактильномуuk
dc.description.abstractAn analysis model is proposed that provides important information about the required statistics of Internet traffic in perspective 6G networks. The work of the proposed model is based on the Tactile Internet.en
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofТези доповідей Всеукраїнської науково-практичної Інтернет-конференції студентів, аспірантів та молодих науковців «Молодь в науці: дослідження, проблеми, перспективи» (МН-2021), м. Вінниця, 01-14 травня 2021 р.uk
dc.relation.urihttps://conferences.vntu.edu.ua/index.php/mn/mn2021/paper/view/13135
dc.subjectмережа 6Guk
dc.subjectтактильний Інтернетuk
dc.subjectтелеопераційна системаuk
dc.subjectшвидкість передачі пакетівuk
dc.subject6G networkuk
dc.subjecttactile Internetuk
dc.subjectteleoperating systemuk
dc.subjectpacket speeduk
dc.titleАналіз використання тактильного трафіку у телеопераційній системі мережі 6guk
dc.typeThesis
dc.identifier.udc621.39
dc.relation.referencesStutzman W.L. Polarization in Electromagnetic Systems / W.L. Stuzman // Artech House, Norwood 2018, 352.
dc.relation.referencesWang L. Excess loss reduction in low cost wide waveguide gap polarization mode converter / L. Wang, Y. Zhao, Y. Xu, T. Zhou, W. Liu, Z. Chen, W. Liu // IEEE Photonics Technology Letters. 2013. Vol. 25. pp. 741-744. DOI: 10.1109/LPT.2013.2246861.
dc.relation.referencesPiltyay S.I. Compact Ku-band iris polarizers for satellite telecommunication systems / S.I. Piltyay, O.Yu. Sushko, A.V. Bulashenko, I.V. Demchenko // Telecommunications and Radio Engineering. 2020. Vol. 79, no. 19. pp. 16731690. DOI:10.1615/TelecomRadEng.v79.i19.10.
dc.relation.referencesBulashenko A.V. Wave matrix technique for waveguide iris polarizers simulation. Theory / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // Journal of Nano- and Electronic Physics. 2020. Vol. 12, no. 6. pp. 06026-106026-5. DOI: 10.21272/jnep.12(6).06026.
dc.relation.referencesPiltyay S. Information resources economy in satellite systems based on new microwave polarizers with tunable posts / S. Piltyay, A. Bulashenko, H. Kushnir, O. Bulashenko // Path of Science. 2020. Vol. 6, No 11. pp. 50015010. http://doi.org/10.22178/pos.55-1.
dc.relation.referencesPiltyay S. FDTD and FEM simulation of microwave waveguide polarizers / S. Piltyay, A.Bulashenko, Ye. Herhil, O. Bulashenko // IEEE 2nd Int. Conf. on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 132-137. DOI: 10.1109/ATIT50783.2020.9349339.
dc.relation.referencesPiltyay S. New tunable iris-post square waveguide polarizers for satellite information systems / S. Piltyay, A. Bulashenko, H. Kushnir, O. Bulashenko // IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 342-348. DOI: 10.1109/ATIT50783.2020.9349357. 8. Bulashenko A. Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers / A. Bulashenko, S. Piltyay, Ye. Kalinichenko, O. Bulashenko // IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 330-336. DOI: 10.1109/ATIT50783.2020.9349321.
dc.relation.referencesBulashenko A.V. Equivalent microwave circuit technique for waveguide iris polarizers development / A.V. Bulashenko, S.I. Piltyay // Visnyk NTUU KPI Seriia Radiotekhnika, Radioaparatobuduvannia. 2020. Vol. 83. pp. 1728. http://doi.org/10.20535/RADAP.2020.83.17-28.
dc.relation.referencesPiltyay S.I. Numerical performance of FEM and FDTD methods for the simulation of waveguide polarizers / S.I. Piltyay, A.V. Bulashenko, Y.Y. Herhil // Visnik NTUU KPI Seriia Radiotekhnika, Radioaparatobuduvannia. 2021. Vol. 84. pp. 1121. DOI:10.20535/RADAP.2021.84.11-21.
dc.relation.referencesBulashenko A.V. Optimization of a polarizer based on a square waveguide with irises / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // Science-Based Technologies. 2020. Vol. 47, No. 3. pp. 287297. (in Ukrainian). http://doi.org/10.18372/2310-5461.47.14878.
dc.relation.referencesBulashenko A.V. Waveguide polarizer with three irises for antennas of satellite television systems / A.V. Bulashenko, S.I. Piltyay, H.S. Kushnir, O.V. Bulashenko // Science-Based Technologies. 2020. Vol. 49, No. 1. pp. 3948. (in Ukrainian). http://doi.org/10.18372/2310-5461.49.15290.
dc.relation.referencesPiltyay S.I. Analytical synthesis of waveguide iris polarizers / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // Telecommunications and Radio Engineering. 2020. Vol. 79, No 18. pp. 15791597. http://doi.org/10.1615/TelecomRadEng.v79.i18.10.
dc.relation.referencesBulashenko A.V. Analytical technique for iris polarizers development / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology, 8-10 October 2020, Kharkiv, Ukraine, pp. 464469.
dc.relation.referencesGhosh A. 5G evolution: a view on 5G cellular technology beyond 3GPP release 15 / A. Ghosh, A. Maeder, M. Baker, D. Chandramouli // IEEE Access. 2019. Vol. 7. pp. 127639-127651. DOI: 10.1109/ACCESS.2019.2939938.
dc.relation.referencesNaqvi S.H.R. 5G NR mmWave indoor coverage with massive antenna system / S.H.R. Naqvi, P.H. Ho, L. Peng // Journal of Communications and Networks. 2021. Vol. 23, No. 1. pp. 1-11. DOI: 10.23919/JCN.2020.000031.
dc.relation.referencesPiltyay S.I. Wireless sensor network connectivity in heterogeneous 5G mobile systems / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 8-10 October 2020, Kharkiv, Ukraine, pp. 508513.
dc.relation.referencesMahmood N.H. Six key features of machine type communication in 6G / N.H. Mahmood, H. Alves, O.A. Lopez, M. Shehab, D.P.M. Osorio, M. Latva-Aho // IEEE 2nd 6G Wireless Summit, 17-20 March 2020, Levi, Finland. DOI: 10.1109/6GSUMMIT49458.2020.9083794.
dc.relation.referencesNaqvi S.H.R. 5G NR mmWave indoor coverage with massive antenna system / S.H.R. Naqvi, P.H. Ho, L. Peng // Journal of Communications and Networks. 2021. Vol. 23, No. 1. pp. 1-11. DOI: 10.23919/JCN.2020.000031.
dc.relation.referencesG. Liu. Vision, requirements and network architecture of 6G mobile network beyond 2030 system / G. Liu, Y. Huang, N. Li, J. Dong, J. Jin, Q. Wang, N. Li // China Communications. 2021. Vol. 17, No. 9. pp. 92-104. DOI: 10.23919/JCC.2020.09.008. 21. Abbou A.N. A software-defined queuing framework for QoS provisioning in 5G and beyond modile systems / A.N. Abbou, T. Taleb, J. Song // IEEE Network. 2021. Vol. 35, No. 2. pp. 168-173. DOI: 10.1109/MNET.011.2000441. 22. Weerasinghe N. A novel blockchain-as-a-service (BaaS) platform for local 5G operators / N. Weerasinghe, T. Hewa, M. Liyanage, S.S. Kanhere, M. Ylianttila // IEEE Open Journal of the Communications Society. 2021. Vol. 2. pp. 575-6013. DOI: 10.1109/OJOMS.2021.3066284. 23. Antonioli R.P. Decentralized joint Beamforming, user scheduling, and QoS management in 5G and Beyond system / R.P. Antonioli, G. Fodor, P. Soldati, T.F. Maciel // IEEE Communications Standards Magazine. 2021. Vol. 5, No. 1. pp. 62-69. DOI: 10.1109/MCOMSTD.001.2000029. 24. Ali K. Review and implementation of resilient public safety networks: 5G, IoT, and emerging technologies / K. Ali, H.X. Nguyen, Q.-T. Vien, P. Shah, M. Raza, V.V. Paranthaman, B. Er-Rahmadi, M. Awais // IEEE Network. 2021. Vol. 35, No. 2. pp. 18-25. DOI: 10.1109/MNET.011.2000418. 25. Hayat S. Edge computing in 5G for drone navigation: what to offload / S. Hayat, R. Jung, H. Hellwagner, C. Bettstetter, D. Emini, D. Schnieders // IEEE Robotics and Automation Letters. 2021. Vol. 6, No. 2. pp. 2571-2578. DOI: 10.1109/LRA.2021.3062319. 26. Bulashenko A.V. Energy efficiency of the D2D direct connection system in 5G networks / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology, 8-10 October 2020, Kharkiv, Ukraine, pp. 324329. 27. Piltyay S.I. Wireless sensor network connectivity in heterogeneous 5G mobile systems / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 8-10 October 2020, Kharkiv, Ukraine, pp. 508513. 28. Bulashenko A. New traffic model of M2M Technology in 5G wireless sensor networks / A. Bulashenko, S. Piltyay, A. Polishchuk, O. Bulashenko // IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 125131. http://doi.org/10.1109/ATIT50783.2020.9349305. 29. Bulashenko A.V. Evaluation of D2D Communications in 5G networks / A.V. Bulashenko // Visnyk NTUU KPI Seriia Radiotekhnika, Radioaparatobuduvannia. 2020. Vol. 81. pp. 2129. (in Ukrainian). http://doi.org/10.20535/RADAP.2020.81.21-29. 30. Bulashenko A.V. Combined criterion for the choice of routing based on D2D technology / A.V. Bulashenko // Radio Electronics, Computer Science, Control. 2021. Vol. 1. pp. 713. (in Ukrainian). http://doi.org/10.15588/1607-3274-2021-1-1. 31. Bulashenko A.V. Data upload system using D2D technology in the unlicensed frequency range as part of the 5G communication system / A.V. Bulashenko // Technical Engineering. 2020. Vol. 86, No. 2. pp. 103107. (in Ukrainian). http://doi.org/10.26642/ten-2020-2(86)-103-107. 32. Barki A. M2M security: challenges and solutions / A. Barki, A. Bouabdallah, S. Gharout, Y. Traore // IEEE Communications Surveys & Tutorials. 2016. Vol. 18, No. 2. pp. 1241-1254. DOI: 10.1109/COMST.2016.2515516. 33. Bulashenko A.V. Resource allocation for low-power devices of M2M technology in 5G networks / A.V. Bulashenko // KPI Science news. 2020. Vol. 3. pp. 713. (In Ukrainian). http://doi.org/10.20535/kpi-sn.2020.3.203863. 34. He Y. Spatial group based access class barring for massive access in M2M / Y. He, G. Ren, S. Liang // IEEE Communications Letters. 2020. Vol. 25, No. 3. pp. 812-816. DOI: 10.1109/LCOMM.2020.3039193. 35. Bulashenko A. New traffic model of M2M Technology in 5G wireless sensor networks / A. Bulashenko, S. Piltyay, A. Polishchuk, O. Bulashenko // IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 125131. http://doi.org/10.1109/ATIT50783.2020.9349305. 36. Myronchuk O. Algorithm of channel frequency response estimation in orthogonal frequency division multiplexing systems based on Kalman filter /O. Myronchuk, O. Shpylka, S. Zhuk // IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, 2529 Feb. 2020, Lviv-Slavske, Ukraine. DOI:10.1109/TCSET49122.2020.235385. 37. Myronchuk A.Y. Channel frequency response estimation method based on pilots filtration and extrapolation / A.Y. Myronchuk, O.O. Shpylka, S.Y. Zhuk // Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia. 2019. Vol. 78. pp. 36-42. DOI: 10.20535/RADAP.2019.78.36-42. 38. Myronchuk O.Y. Two-Stage Method for Joint Estimation of Information Symbols and Channel Frequency Response in OFDM Communication Systems / O.Y. Myronchuk, A.A. Shpylka, S.Y. Zhuk // Radioelectronics Communications System. 2020. Vol. 63. pp. 418429. https://doi.org/10.3103/S073527272008004X. 39. Myronchuk O. Two-stage channel frequency response estimation in OFDM systems / O. Myronchuk, O. Shpylka, S. Zhuk // Path of Science. 2020. Vol. 6, No. 2. pp. 1001-1007. DOI: 10.22178/pos.55-1. 40. Zhuk S.Y. Estimation of stochastic processes with random structure and Markov switches in discreet time / S.Y. Zhuk // Radioelectronics Communications System. 2020. Vol. 63, No. 10. pp. 505520. https://doi.org/10.3103/S0735272720100015. 41. Vishnevyy S.V. Two-stage joint non-causal filtering and segmentation of nonuniform images / S.V. Vishnevyy, S.Y. Zhuk // Radioelectronics Communications System. 2011. Vol. 54, No. 10. pp. 554 565. https://doi.org/10.3103/S07352727211100050. 42. .. / .. , .. // . . 2010. Vol. 40. pp. 5560. https://doi.org/10.20535/RADAP.2010.40.55-60. 43. Vishnevyy S. Two-stage segmentation of SAR images distorted by additive noise with uncorrelated samples / S. Vishnevyy // IEEE 39th International Conference on Electronics and Nanotechnology, 16-18 April 2019, Kyiv, Ukraine. DOI:10.1109/ELNANO.2019.8783707. 44. Bulashenko A.V. Analytical technique for iris polarizers development / A.V. Bulashenko, S.I. Piltay, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T). Kharkiv, Ukraine, 2020. pp. 471-476. 45. Piltyay S.I. Waveguide iris polarizers for Ku-band satellite antenna feeds / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // Journal of Nano- and Electronic Physics. 2020. Vol. 12, No. 5. pp. 05024-105024-5. http://doi.org/10.21272/jnep.12(5).05024. 46. Bulashenko A.V. Simulation of compact polarizers for satellite telecommunication systems with the account of irises thickness / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // KPI Science news. 2021. Vol. 1. pp. 2533. http://doi.org/10.20535/kpi-sn.2021.1.203863. 47. Bulashenko A.V. Compact waveguide polarizer with three antiphase posts / A.V. Bulashenko, S.I. Piltyay, H.S. Kushnir, O.V. Bulashenko // Visnyk VPI. 2020. Vol. 5. pp. 97104. [In Ukrainian]. DOI: 10.31649/1997-9266-2020-151-5-97-104. 48. Bulashenko A.V. Tunable square waveguide polarizer with irises and posts / A.V. Bulashenko, S.I. Piltyay, Y.I. Kalinichenko, O.V. Bulashenko // Technical Engineering. 2020. Vol. 86, no 2. pp. 108 116. [In Ukrainian]. DOI: 10.26642/ten-2020-2(86)-108-116. 49. Piltyay S.I. High performance waveguide polarizer for satellite information systems / S.I. Piltyay, A.V. Bulashenko, Ye.I. Kalinichenko, O.V. Bulashenko // Bulletin of Cherkasy State Technological University. 2020. Vol. 4. pp. 1426. [In Ukrainian]. DOI: 10.24025/2306-4412.4.2020.217129. 50. Dubrovka F. Boundary problem solution for eigenmodes in coaxial quad-ridged waveguides / F. Dubrovka, S. Piltyay // Information and Telecommunication Science. 2014. Vol. 5, no. 1. pp. 4861. DOI: 10.20535/2411-2976.12014.48-61. 51. Naydenko V. Evolution of radiopulses radiated by Hertzs dipole in vacuum / V. Naydenko, S. Piltyay // IEEE International Conference on Mathematical Methods in Electromagnetic, 1-2 July 2008, Odessa, Ukraine. DOI: 10.1109/MMET.2008.4580972. 52. Piltyay S.I. Enhanced C-band coaxial orthomode transducer / S.I. Piltyay // Visnyk NTUU KPI Seriia Radiotekhnika, Radioaparatobuduvannia. 2014. Vol. 58. pp. 2734. http://doi.org/10.20535/RADAP.2014.58.27-34. 53. Dubrovka F. Prediction of eigenmodes cutoff frequencies of sectoral coaxial ridged waveguides / F. Dubrovka, S. Piltyay // IEEE International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, 21-24 February 2012, Lviv, Ukraine. 54. Bulashenko A.V. Beamforming principels of smart antennas / A.V. Bulashenko // Visnik Sumy State University. Seriia Technical sciences. 2010. Vol. 1. pp. 111-120. 55.


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію