Показати скорочену інформацію

dc.contributor.authorДіхтярук, І. І.uk
dc.contributor.authorЗабегалов, І. В.uk
dc.contributor.authorПільтяй, С. І.uk
dc.contributor.authorБулашенко, А. В.uk
dc.date.accessioned2025-03-18T14:53:13Z
dc.date.available2025-03-18T14:53:13Z
dc.date.issued2021
dc.identifier.citation[Електронний ресурс] / І. І. Діхтярук, І. В. Забегалов, С. І. Пільтяй, А. В. Булашенко // Тези доповідей Всеукраїнської науково-практичної Інтернет-конференції студентів, аспірантів та молодих науковців «Молодь в науці: дослідження, проблеми, перспективи» (МН-2021), м. Вінниця, 01-14 травня 2021 р. – Електрон. текст. дані. – 2021. – Режим доступу: https://conferences.vntu.edu.ua/index.php/mn/mn2021/paper/view/13134.uk
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/45711
dc.description.abstractЗапропоновано модель алгоритму, що керує мережевим трафіком за допомогою SDN у гетерогенній мережі, та забезпечує хорошу точність у визначенні завантаження трафіка.uk
dc.description.abstractAn algorithm model is proposed that manages network traffic using SDN in a heterogeneous network and provides good accuracy in determining traffic load.en
dc.language.isouk_UAuk_UA
dc.publisherВНТУuk
dc.relation.ispartofТези доповідей Всеукраїнської науково-практичної Інтернет-конференції студентів, аспірантів та молодих науковців «Молодь в науці: дослідження, проблеми, перспективи» (МН-2021), м. Вінниця, 01-14 травня 2021 р.uk
dc.relation.urihttps://conferences.vntu.edu.ua/index.php/mn/mn2021/paper/view/13134
dc.subjectмережа 5Guk
dc.subjectгетерогенна мережаuk
dc.subjectпрограмно-визначена мережаuk
dc.subjectякість обслуговуванняuk
dc.subject5G networkuk
dc.subjectheterogeneous networkuk
dc.subjectsoftware defined networkuk
dc.subjectquality of serviceuk
dc.titleКонтроль трафіку у гетерогенних мережа 5guk
dc.typeThesis
dc.identifier.udc621.39
dc.relation.referencesJaber M. 5G backhaul challenges and emerging research directions: a survey / M. Jaber, M.A. Imran, R. Tafazolli, A. Tukmanov // IEEE Access. 2016. Vol. 4. pp. 1743-1766. DOI: 10.1109/ACCESS.2016.2556011.
dc.relation.referencesGhosh A. 5G evolution: a view on 5G cellular technology beyond 3GPP release 15 / A. Ghosh, A. Maeder, M. Baker, D. Chandramouli // IEEE Access. 2019. Vol. 7. pp. 127639-127651. DOI: 10.1109/ACCESS.2019.2939938.
dc.relation.referencesAbbou A.N. A software-defined queuing framework for QoS provisioning in 5G and beyond modile systems / A.N. Abbou, T. Taleb, J. Song // IEEE Network. 2021. Vol. 35, No. 2. pp. 168-173. DOI: 10.1109/MNET.011.2000441.
dc.relation.referencesWeerasinghe N. A novel blockchain-as-a-service (BaaS) platform for local 5G operators / N. Weerasinghe, T. Hewa, M. Liyanage, S.S. Kanhere, M. Ylianttila // IEEE Open Journal of the Communications Society. 2021. Vol. 2. pp. 575-6013. DOI: 10.1109/OJOMS.2021.3066284.
dc.relation.referencesNaqvi S.H.R. 5G NR mmWave indoor coverage with massive antenna system / S.H.R. Naqvi, P.H. Ho, L. Peng // Journal of Communications and Networks. 2021. Vol. 23, No. 1. pp. 1-11. DOI: 10.23919/JCN.2020.000031. 6. Antonioli R.P. Decentralized joint Beamforming, user scheduling, and QoS management in 5G and Beyond system / R.P. Antonioli, G. Fodor, P. Soldati, T.F. Maciel // IEEE Communications Standards Magazine. 2021. Vol. 5, No. 1. pp. 62-69. DOI: 10.1109/MCOMSTD.001.2000029.
dc.relation.referencesAli K. Review and implementation of resilient public safety networks: 5G, IoT, and emerging technologies / K. Ali, H.X. Nguyen, Q.-T. Vien, P. Shah, M. Raza, V.V. Paranthaman, B. Er-Rahmadi, M. Awais // IEEE Network. 2021. Vol. 35, No. 2. pp. 18-25. DOI: 10.1109/MNET.011.2000418.
dc.relation.referencesHayat S. Edge computing in 5G for drone navigation: what to offload / S. Hayat, R. Jung, H. Hellwagner, C. Bettstetter, D. Emini, D. Schnieders // IEEE Robotics and Automation Letters. 2021. Vol. 6, No. 2. pp. 2571-2578. DOI: 10.1109/LRA.2021.3062319.
dc.relation.referencesPiltyay S.I. Wireless sensor network connectivity in heterogeneous 5G mobile systems / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), 8-10 October 2020, Kharkiv, Ukraine, pp. 508513.
dc.relation.referencesBulashenko A. New traffic model of M2M Technology in 5G wireless sensor networks / A. Bulashenko, S. Piltyay, A. Polishchuk, O. Bulashenko // IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 125131. http://doi.org/10.1109/ATIT50783.2020.9349305.
dc.relation.referencesZhu A. Adaptive multi-access algorithm for multi-service edge users in 5G ultra-dense heterogeneous networks / A. Zhu, M. Ma, S. Guo, S. Yu, L. Yi // IEEE Transactions on Vehicular Technology. 2021. Vol. 70, No. 3. pp. 2807-2821. DOI: 10.1109/TVT.2021.3060573.
dc.relation.referencesBouali F. Multi-timescale QoE provisioning for adaptive video streaming in heterogeneous deployments / F. Bouali, K. Moessner, M. Fitch // IEEE Transactions on Vehicular Technology. 2021. Vol. 70, No. 2. pp. 1894-1909. DOI: 10.1109/TVT.2021.3055490.
dc.relation.referencesCao J. A survey on security aspects for LTE and LTE-A networks / J. Cao, M. Ma, H. Li, Y. Zhang, Z. Luo // IEEE Communications Serveys & Tutorials. 2013. Vol. 16, No. 1. pp. 283-302. DOI: 10.1109/SURV.2013.041513.00174.
dc.relation.referencesZilberman A. SDN wireless controller placement problem the 4G LTE-U case / A. Zilberman, Y. Haddad, S. Erlich, Y. Peretz, A. Dvir // IEEE Access. 2021. Vol. 9. pp. 16225-16238. DOI: 10.1109/SURV.2021.3052892.
dc.relation.referencesBulashenko A.V. Energy efficiency of the D2D direct connection system in 5G networks / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology, 8-10 October 2020, Kharkiv, Ukraine, pp. 324329.
dc.relation.referencesBulashenko A.V. Evaluation of D2D Communications in 5G networks / A.V. Bulashenko // Visnyk NTUU KPI Seriia Radiotekhnika, Radioaparatobuduvannia. 2020. Vol. 81. pp. 2129. (in Ukrainian). http://doi.org/10.20535/RADAP.2020.81.21-29.
dc.relation.referencesBulashenko A.V. Combined criterion for the choice of routing based on D2D technology / A.V. Bulashenko // Radio Electronics, Computer Science, Control. 2021. Vol. 1. pp. 713. (in Ukrainian). http://doi.org/10.15588/1607-3274-2021-1-1.
dc.relation.referencesBulashenko A.V. Data upload system using D2D technology in the unlicensed frequency range as part of the 5G communication system / A.V. Bulashenko // Technical Engineering. 2020. Vol. 86, No. 2. pp. 103107. (in Ukrainian). http://doi.org/10.26642/ten-2020-2(86)-103-107.
dc.relation.referencesBulashenko A.V. Resource allocation for low-power devices of M2M technology in 5G networks / A.V. Bulashenko // KPI Science news. 2020. Vol. 3. pp. 713. (In Ukrainian). http://doi.org/10.20535/kpi-sn.2020.3.203863.
dc.relation.referencesBarki A. M2M security: challenges and solutions / A. Barki, A. Bouabdallah, S. Gharout, Y. Traore // IEEE Communications Surveys & Tutorials. 2016. Vol. 18, No. 2. pp. 1241-1254. DOI: 10.1109/COMST.2016.2515516. 21. He Y. Spatial group based access class barring for massive access in M2M / Y. He, G. Ren, S. Liang // IEEE Communications Letters. 2020. Vol. 25, No. 3. pp. 812-816. DOI: 10.1109/LCOMM.2020.3039193. 22. Mazhar N. Role of device identification and manufacturer usage description in IoT security: a survey / N. Mazhar, R. Salleh, M. Zeeshan, M.M. Hameed // IEEE Access. 2021. Vol. 9. pp. 41757-41786. DOI: 10.1109/ACCESS.2021.3065123. 23. Azrour M. New enhanced authentication protocol for Internet of Things / M. Azrour, J. Mabrouki, A. Guezzaz, Y. Farhaoui // Big Data Mining and Analytics. 2021. Vol. 4, No. 1. pp. 1-9. DOI: 10.1109/BDMA.2020.9020010. 24. Myronchuk O. Algorithm of channel frequency response estimation in orthogonal frequency division multiplexing systems based on Kalman filter /O. Myronchuk, O. Shpylka, S. Zhuk // IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, 2529 Feb. 2020, Lviv-Slavske, Ukraine. DOI:10.1109/TCSET49122.2020.235385. 25. Myronchuk A.Y. Channel frequency response estimation method based on pilots filtration and extrapolation / A.Y. Myronchuk, O.O. Shpylka, S.Y. Zhuk // Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia. 2019. Vol. 78. pp. 36-42. DOI: 10.20535/RADAP.2019.78.36-42. 26. Myronchuk O.Y. Two-Stage Method for Joint Estimation of Information Symbols and Channel Frequency Response in OFDM Communication Systems / O.Y. Myronchuk, A.A. Shpylka, S.Y. Zhuk // Radioelectronics Communications System. 2020. Vol. 63. pp. 418429. https://doi.org/10.3103/S073527272008004X. 27. Myronchuk O. Two-stage channel frequency response estimation in OFDM systems / O. Myronchuk, O. Shpylka, S. Zhuk // Path of Science. 2020. Vol. 6, No. 2. pp. 1001-1007. DOI: 10.22178/pos.55-1. 28. Piltyay S.I. Compact Ku-band iris polarizers for satellite telecommunication systems / S.I. Piltyay, O.Yu. Sushko, A.V. Bulashenko, I.V. Demchenko // Telecommunications and Radio Engineering. 2020. Vol. 79, no. 19. pp. 16731690. DOI:10.1615/TelecomRadEng.v79.i19.10. 29. Piltyay S. Information resources economy in satellite systems based on new microwave polarizers with tunable posts / S. Piltyay, A. Bulashenko, H. Kushnir, O. Bulashenko // Path of Science. 2020. Vol. 6, No 11. pp. 50015010. http://doi.org/10.22178/pos.55-1. 30. Bulashenko A.V. Optimization of a polarizer based on a square waveguide with irises / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // Science-Based Technologies. 2020. Vol. 47, No. 3. pp. 287297. (in Ukrainian). http://doi.org/10.18372/2310-5461.47.14878. 31. Bulashenko A.V. Waveguide polarizer with three irises for antennas of satellite television systems / A.V. Bulashenko, S.I. Piltyay, H.S. Kushnir, O.V. Bulashenko // Science-Based Technologies. 2020. Vol. 49, No. 1. pp. 3948. (in Ukrainian). http://doi.org/10.18372/2310-5461.49.15290. 32. Bulashenko A.V. Wave matrix technique for waveguide iris polarizers simulation. Theory / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // Journal of Nano- and Electronic Physics. 2020. Vol. 12, no. 6. pp. 06026-106026-5. DOI: 10.21272/jnep.12(6).06026. 33. Bulashenko A.V. Equivalent microwave circuit technique for waveguide iris polarizers development / A.V. Bulashenko, S.I. Piltyay // Visnyk NTUU KPI Seriia Radiotekhnika, Radioaparatobuduvannia. 2020. Vol. 83. pp. 1728. http://doi.org/10.20535/RADAP.2020.83.17-28. 34. Piltyay S. New tunable iris-post square waveguide polarizers for satellite information systems / S. Piltyay, A. Bulashenko, H. Kushnir, O. Bulashenko // IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 342-348. DOI: 10.1109/ATIT50783.2020.9349357. 35. Bulashenko A. Mathematical modeling of iris-post sections for waveguide filters, phase shifters and polarizers / A. Bulashenko, S. Piltyay, Ye. Kalinichenko, O. Bulashenko // IEEE 2nd International Conference on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 330-336. DOI: 10.1109/ATIT50783.2020.9349321. 36. Piltyay S. FDTD and FEM simulation of microwave waveguide polarizers / S. Piltyay, A.Bulashenko, Ye. Herhil, O. Bulashenko // IEEE 2nd Int. Conf. on Advanced Trends in Information Theory, 25-27 November 2020, Kyiv, Ukraine, pp. 132-137. DOI: 10.1109/ATIT50783.2020.9349339. 37. Bulashenko A.V. Analytical technique for iris polarizers development / A.V. Bulashenko, S.I. Piltay, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T). Kharkiv, Ukraine, 2020. pp. 471-476. 38. Bulashenko A.V. Tunable square waveguide polarizer with irises and posts / A.V. Bulashenko, S.I. Piltyay, Y.I. Kalinichenko, O.V. Bulashenko // Technical Engineering. 2020. Vol. 86, no 2. pp. 108 116. [In Ukrainian]. DOI: 10.26642/ten-2020-2(86)-108-116. 39. Piltyay S.I. Numerical performance of FEM and FDTD methods for the simulation of waveguide polarizers / S.I. Piltyay, A.V. Bulashenko, Y.Y. Herhil // Visnik NTUU KPI Seriia Radiotekhnika, Radioaparatobuduvannia. 2021. Vol. 84. pp. 1121. DOI:10.20535/RADAP.2021.84.11-21. 40. Bulashenko A.V. Compact waveguide polarizer with three antiphase posts / A.V. Bulashenko, S.I. Piltyay, H.S. Kushnir, O.V. Bulashenko // Visnyk VPI. 2020. Vol. 5. pp. 97104. [In Ukrainian]. DOI: 10.31649/1997-9266-2020-151-5-97-104. 41. Piltyay S.I. High performance waveguide polarizer for satellite information systems / S.I. Piltyay, A.V. Bulashenko, Ye.I. Kalinichenko, O.V. Bulashenko // Bulletin of Cherkasy State Technological University. 2020. Vol. 4. pp. 1426. [In Ukrainian]. DOI: 10.24025/2306-4412.4.2020.217129. 42. Bulashenko A.V. Simulation of compact polarizers for satellite telecommunication systems with the account of irises thickness / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // KPI Science news. 2021. Vol. 1. pp. 2533. http://doi.org/10.20535/kpi-sn.2021.1.203863. 43. Piltyay S.I. Analytical synthesis of waveguide iris polarizers / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // Telecommunications and Radio Engineering. 2020. Vol. 79, No 18. pp. 15791597. http://doi.org/10.1615/TelecomRadEng.v79.i18.10. 44. Bulashenko A.V. Analytical technique for iris polarizers development / A.V. Bulashenko, S.I. Piltyay, I.V. Demchenko // IEEE International Conference on Problems of Infocommunications. Science and Technology, 8-10 October 2020, Kharkiv, Ukraine, pp. 464469. 45. Piltyay S.I. Waveguide iris polarizers for Ku-band satellite antenna feeds / S.I. Piltyay, A.V. Bulashenko, I.V. Demchenko // Journal of Nano- and Electronic Physics. 2020. Vol. 12, No. 5. pp. 05024-105024-5. http://doi.org/10.21272/jnep.12(5).05024. 46. Dubrovka F. Boundary problem solution for eigenmodes in coaxial quad-ridged waveguides / F. Dubrovka, S. Piltyay // Information and Telecommunication Science. 2014. Vol. 5, no. 1. pp. 4861. DOI: 10.20535/2411-2976.12014.48-61. 47. Naydenko V. Evolution of radiopulses radiated by Hertzs dipole in vacuum / V. Naydenko, S. Piltyay // IEEE International Conference on Mathematical Methods in Electromagnetic, 1-2 July 2008, Odessa, Ukraine. DOI: 10.1109/MMET.2008.4580972. 48. Dubrovka F. Prediction of eigenmodes cutoff frequencies of sectoral coaxial ridged waveguides / F. Dubrovka, S. Piltyay // IEEE International Conference on Modern Problem of Radio Engineering, Telecommunications and Computer Science, 21-24 February 2012, Lviv, Ukraine. 49. Piltyay S.I. Enhanced C-band coaxial orthomode transducer / S.I. Piltyay // Visnyk NTUU KPI Seriia Radiotekhnika, Radioaparatobuduvannia. 2014. Vol. 58. pp. 2734. http://doi.org/10.20535/RADAP.2014.58.27-34. 50. Bulashenko A.V. Beamforming principels of smart antennas / A.V. Bulashenko // Visnik Sumy State University. Seriia Technical sciences. 2010. Vol. 1. pp. 111-120. 51.


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію