Показати скорочену інформацію

dc.contributor.authorKvyetnyy, Romanen
dc.contributor.authorBunyak, Yuriyen
dc.contributor.authorSofina, Olgaen
dc.contributor.authorKotsiubynskyi, Volodymyren
dc.contributor.authorStakhov, Oleksiien
dc.contributor.authorDenysiuk, Valeriien
dc.contributor.authorNurakhmetov, Baurzhanen
dc.contributor.authorGrądz, Żaklinen
dc.contributor.authorKozbakova, Ainuren
dc.contributor.authorКвєтний, Р. Н.uk
dc.contributor.authorКоцюбинський, В. Ю.uk
dc.contributor.authorСтахов, О. Я.uk
dc.contributor.authorДенисюк, В. О.uk
dc.date.accessioned2025-07-01T07:35:04Z
dc.date.available2025-07-01T07:35:04Z
dc.date.issued2024
dc.identifier.citationKvyetnyy R., Bunyak Yu., Sofina O., Kotsiubynskyi V., Stakhov O., Denysiuk V., Nurakhmetov B., Grądz Z., Kozbakova A. Regression method for inverse correlation filters design for objects recognition // Proc. SPIE 13400 «Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2024», 16 December 2024. 2024. 134000M. DOI: https://doi.org/10.1117/12.3054893.en
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/46743
dc.description.abstractThe problem of inverse correlation filters design to recognize a set of objects is considered as the problem of regression parameters estimation on the base of input data arrays and desirable response. The data and response should be processes with zero mean to consider this problem as evaluation of regression parameters. The problem is solved using the least squares method with regularization. The regularization is optimized to achieve high resolution of the filters in conjunction with capture` broad band of objects given by a set of templates. The least squares method is using in the terms of singular value decomposition that made it possible to linearize the nonlinear ridge regression optimization problem. The methods to false recognitions elimination are considered, It was shown that the regression approach gives additional condition to recognize classes of objects. This allows to have more high accuracy in recognition of desired objects on a foreign background in comparison with other correlation filters types.en
dc.language.isoenen
dc.publisherSociety of Photo-Optical Instrumentation Engineersen
dc.relation.ispartofProc. SPIE 13400 «Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2024», 16 December 2024.en
dc.subjectregressionen
dc.subjectobjects recognitionen
dc.subjectcorrelation filteren
dc.subjectinverse filteren
dc.subjectoptimized regularizationen
dc.titleRegression method for inverse correlation filters design for objects recognitionen
dc.typeArticle, Scopus-WoS
dc.typeArticle


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію