dc.contributor.author | Kvyetnyy, Roman | en |
dc.contributor.author | Bunyak, Yuriy | en |
dc.contributor.author | Sofina, Olga | en |
dc.contributor.author | Kotsiubynskyi, Volodymyr | en |
dc.contributor.author | Stakhov, Oleksii | en |
dc.contributor.author | Denysiuk, Valerii | en |
dc.contributor.author | Nurakhmetov, Baurzhan | en |
dc.contributor.author | Grądz, Żaklin | en |
dc.contributor.author | Kozbakova, Ainur | en |
dc.contributor.author | Квєтний, Р. Н. | uk |
dc.contributor.author | Коцюбинський, В. Ю. | uk |
dc.contributor.author | Стахов, О. Я. | uk |
dc.contributor.author | Денисюк, В. О. | uk |
dc.date.accessioned | 2025-07-01T07:35:04Z | |
dc.date.available | 2025-07-01T07:35:04Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Kvyetnyy R., Bunyak Yu., Sofina O., Kotsiubynskyi V., Stakhov O., Denysiuk V., Nurakhmetov B., Grądz Z., Kozbakova A. Regression method for inverse correlation filters design for objects recognition // Proc. SPIE 13400 «Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2024», 16 December 2024. 2024. 134000M. DOI: https://doi.org/10.1117/12.3054893. | en |
dc.identifier.uri | https://ir.lib.vntu.edu.ua//handle/123456789/46743 | |
dc.description.abstract | The problem of inverse correlation filters design to recognize a set of objects is considered as the problem of regression
parameters estimation on the base of input data arrays and desirable response. The data and response should be processes
with zero mean to consider this problem as evaluation of regression parameters. The problem is solved using the
least squares method with regularization. The regularization is optimized to achieve high resolution of the
filters in conjunction with capture` broad band of objects given by a set of templates. The least squares method is
using in the terms of singular value decomposition that made it possible to linearize the nonlinear ridge regression
optimization problem. The methods to false recognitions elimination are considered, It was shown that the regression
approach gives additional condition to recognize classes of objects. This allows to have more high accuracy in
recognition of desired objects on a foreign background in comparison with other correlation filters types. | en |
dc.language.iso | en | en |
dc.publisher | Society of Photo-Optical Instrumentation Engineers | en |
dc.relation.ispartof | Proc. SPIE 13400 «Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2024», 16 December 2024. | en |
dc.subject | regression | en |
dc.subject | objects recognition | en |
dc.subject | correlation filter | en |
dc.subject | inverse filter | en |
dc.subject | optimized regularization | en |
dc.title | Regression method for inverse correlation filters design for objects recognition | en |
dc.type | Article, Scopus-WoS | |
dc.type | Article | |