Показати скорочену інформацію

dc.contributor.authorShtovba, S.en
dc.contributor.authorPankevich, O.en
dc.contributor.authorDounias, Gen
dc.contributor.authorШтовба, С. Д.uk
dc.contributor.authorПанкевич, О. Д.uk
dc.contributor.authorДоуниас, Г.uk
dc.date.accessioned2020-12-21T12:25:04Z
dc.date.available2020-12-21T12:25:04Z
dc.date.issued2004
dc.identifier.citationShtovba S.Tuning the Fuzzy Classification Models with Various Learning Criteria: the Case of Credit Data Classification [Text] / S. Shtovba, O. Pankevich, G. Dounias // Proc. of Inter. Conference on Fuzzy Sets and Soft Computing in Economics and Finance, Saint-Petersburg (Russia), 17–20 June 2004. – Saint-Petersburg : Russian Fuzzy Systems Association, 2004. – Vol. 1. – P. 103–110.en
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/31078
dc.description.abstractIn this paper we study the efficiency of various learning criteria for the proper tuning of a fuzzy classifier. Different cases of crisp and noisy class borders are considered, and a specific credit-risk application is discussed.en
dc.language.isoenen
dc.publisherRussian Fuzzy Systems Associationen
dc.relation.ispartofProc. of Inter. Conference on Fuzzy Sets and Soft Computing in Economics and Finance, Saint-Petersburg (Russia), 17–20 June 2004. Vol. 1 : 103–110.en
dc.titleTuning the Fuzzy Classification Models with Various Learning Criteria: the Case of Credit Data Classificationen
dc.typeArticle


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію