dc.contributor.author | Shtovba, S. | en |
dc.contributor.author | Pankevich, O. | en |
dc.contributor.author | Dounias, G | en |
dc.contributor.author | Штовба, С. Д. | uk |
dc.contributor.author | Панкевич, О. Д. | uk |
dc.contributor.author | Доуниас, Г. | uk |
dc.date.accessioned | 2020-12-21T12:25:04Z | |
dc.date.available | 2020-12-21T12:25:04Z | |
dc.date.issued | 2004 | |
dc.identifier.citation | Shtovba S.Tuning the Fuzzy Classification Models with Various Learning Criteria: the Case of Credit Data Classification [Text] / S. Shtovba, O. Pankevich, G. Dounias // Proc. of Inter. Conference on Fuzzy Sets and Soft Computing in Economics and Finance, Saint-Petersburg (Russia), 17–20 June 2004. – Saint-Petersburg : Russian Fuzzy Systems Association, 2004. – Vol. 1. – P. 103–110. | en |
dc.identifier.uri | http://ir.lib.vntu.edu.ua//handle/123456789/31078 | |
dc.description.abstract | In this paper we study the efficiency of various learning criteria for the
proper tuning of a fuzzy classifier. Different cases of crisp and noisy class borders
are considered, and a specific credit-risk application is discussed. | en |
dc.language.iso | en | en |
dc.publisher | Russian Fuzzy Systems Association | en |
dc.relation.ispartof | Proc. of Inter. Conference on Fuzzy Sets and Soft Computing in Economics and Finance, Saint-Petersburg (Russia), 17–20 June 2004. Vol. 1 : 103–110. | en |
dc.title | Tuning the Fuzzy Classification Models with Various Learning Criteria: the Case of Credit Data Classification | en |
dc.type | Article | |