Аналіз методів знаходження аномалій у зображеннях
Analysis of anomaly detection methods in images
dc.contributor.author | Маслій, Р. В. | uk |
dc.contributor.author | Гармаш, В. В. | uk |
dc.contributor.author | Ковальчук, П. П. | uk |
dc.contributor.author | Кабачій, В. В. | uk |
dc.contributor.author | Maslii, R. V. | en |
dc.contributor.author | Garmash, V. V. | en |
dc.contributor.author | Kovalchuk, P. P. | en |
dc.contributor.author | Kabachii, V. V. | en |
dc.date.accessioned | 2024-09-09T11:55:55Z | |
dc.date.available | 2024-09-09T11:55:55Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Маслій Р. В., Гармаш В. В., Ковальчук П. П., Кабачій В. В. Аналіз методів знаходження аномалій у зображеннях. Інформаційні технології та комп`ютерна інженерія. 2024. Вип. 59, № 1. C. 13-22. | uk |
dc.identifier.uri | https://ir.lib.vntu.edu.ua//handle/123456789/43245 | |
dc.description.abstract | Automatic anomaly detection is of great importance in industry, remote sensing, and medicine. It is important to be able to automatically process large amounts of data to detect, for example, chemical objects in multispectral and hyperspectral satellite images, sea mines in side-scan sonar images, or defects in industrial monitoring applications. Automatic detection of anomalous structures on arbitrary images refers to the task of finding inappropriate patterns relative to the normal state of the image. This is a difficult task in computer vision, since there is no clear and straightforward definition of what is normal or not normal for a given arbitrary image. The practical importance is manifested in the development of algorithms and models that can automatically detect unusual or anomalous patterns in images. An analysis of methods for finding anomalies in images the point of view of the possibility of application to arbitrary images has been carried out. The classification of anomaly detection methods according to the criteria of the involved approaches and models used for modeling the background is presented. Methods that use machine learning, such as one-class support vector method and variational autoencoder, nearest neighbor-based anomaly detection, clustering-based anomaly detection, statistical anomaly detection, spectral anomaly detection, anomaly detection using information theory are discussed. The main attention is paid to the methods classified according to the background modeling approach. Five categories of background modeling methods based on probability density function, global and local homogeneity, sparsity, and self-similarity are considered. For anomaly detection applications, it is recommended to use methods in which the background model best describes the expected anomaly-free background, as this generally results in the best performance. On the basis of research, it was established that an effective universal model for detecting anomalies in arbitrary images should: use only a self-similar or sparse background model; process the residual image as a stochastic process to detect anomalies, such as anomalies in color noise; preprocess the residual image before detecting the anomaly. | en |
dc.description.abstract | Автоматичне виявлення аномалій має велике значення в промисловості, дистанційному зондуванні та медицині. Важливо мати можливість автоматично обробляти великі обсяги даних для виявлення, наприклад, хімічних об`єктів на багатоспектральних та гіперспектральних супутникових зображеннях, морських мін на сонарних зображеннях бічного зондування, або дефектів у виробничих моніторингових застосуваннях. Автоматичне виявлення аномальних структур на довільних зображеннях стосується задачі пошуку невідповідних шаблонів відносно нормального стану зображення. Це важка задача в комп`ютерному зорі, оскільки не існує чіткого і прямолінійного визначення того, що є нормальним чи не нормальним для даного довільного зображення. Практична важливість проявляється у розробці алгоритмів та моделей, які автоматично можуть виявляти незвичайні або аномальні образи у зображеннях. Проведено аналіз методів знаходження аномалій у зображеннях з точки зору можливості застосування до довільних зображень. Наведена класифікація методів виявлення аномалій за критеріями залучених підходів та моделей що використовуються для моделювання фону. Розглянуті методи, які використовують машинне навчання, такі як однокласовий метод опорних векторів та варіаційний автоенкодер, методи виявлення аномалій на основі найближчих сусідів, на основі кластеризації, статистичне виявлення аномалій, спектральне виявлення аномалій, виявлення аномалій за допомогою інформаційної теорії. Основна увага приділена методам, що класифікують за підходом до моделювання фону. Розглянуто п`ять категорій методів, що моделюють фон, базуючись на функції щільності ймовірносіті, глобальній та локальній однорідності, розрідженості та самоподібністі. Для застосувань виявлення аномалій рекомендовано використовувати методи, у яких модель фону найкраще описує очікуваний фон, на якому відсутні аномалії, оскільки це, як правило, призводить до найкращої ефективності. На основі досліджень було встановлено, що ефективна універсальна модель виявлення аномалій у довільних зображеннях повинна: використовувати лише самоподібну чи розріджену модель фону; обробляти залишкове зображення як стохастичний процес для виявлення аномалій, як аномалій у кольоровому шумі; попередньо обробляти залишкове зображення перед виявленням аномалії. | uk |
dc.language.iso | uk_UA | uk_UA |
dc.publisher | ВНТУ | uk |
dc.relation.ispartof | Інформаційні технології та комп`ютерна інженерія. № 1 : 13-22. | uk |
dc.relation.uri | https://itce.vntu.edu.ua/index.php/itce/article/view/988 | |
dc.subject | моделювання | uk |
dc.subject | обробка зображення | uk |
dc.subject | виявлення аномалій | uk |
dc.subject | фонова модель | uk |
dc.subject | машинне навчання | uk |
dc.subject | modeling | en |
dc.subject | image processing | en |
dc.subject | anomaly detection | en |
dc.subject | background model | en |
dc.subject | machine learning | en |
dc.title | Аналіз методів знаходження аномалій у зображеннях | uk |
dc.title | Analysis of anomaly detection methods in images | en |
dc.type | Article | |
dc.identifier.udc | 004.932 | uk |
dc.relation.references | Ghamry Fatma M., et al. "Survey of Image Anomaly Detection" (2022). https://assets. researchsquare.com/files/rs-1890977/v1/2ce2b06a-890a-428d-810e-3ad8173caf7b.pdf?c=1660897768 | en |
dc.relation.references | Du B., Zhang L. Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and Remote sensing 49(5), 1578-1589. 2011. | en |
dc.relation.references | Goldman A., Cohen I. “Anomaly detection based on an iterative local statistics approach”, Signal Processing, 84(7), 1225-1229. 2004. | en |
dc.relation.references | Cohen F.S., Fan Z., Attali S. “Automated inspection of textile fabrics using textural models”, IEEE Transactions on Pattern Analysis & Machine Intelligence, (8), 803-808. 1991. | en |
dc.relation.references | Xie X., Mirmehdi, M. Texems: “Texture exemplars for defect detection on random textured surfaces”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 1454-1464. 2007. | en |
dc.relation.references | Grosjean B., Moisan L. “A-contrario detectability of spots in textured backgrounds”, Journal of Mathematical Imaging and Vision, 33(3), 313-337. 2009. | en |
dc.relation.references | Perng D.B., Chen S.H., Chang Y.S. “A novel internal thread defect auto-inspection system”, The International Journal of Advanced Manufacturing Technology, 47(5-8), 731-743. 2010. | en |
dc.relation.references | Tsai D.M., Huang T.Y. “Automated surface inspection for statistical textures”, Image and Vision computing, 21(4), 307-323. 2003. | en |
dc.relation.references | Iivarinen J. "Surface defect detection with histogrambased texture features”, In: Intelligent robots and computer vision xix: Algorithms, techniques, and active vision, vol. 4197, pp. 140-146. International Society for Optics and Photonics. 2000. | en |
dc.relation.references | An J. “Variational Autoencoder based Anomaly Detection using Reconstruction Probability”. Arxiv (2016) | en |
dc.relation.references | Tout K., Cogranne R., Retraint, F. “Fully automatic detection of anomalies on wheels surface using an adaptive accurate model and hypothesis testing theory”, In: 2016 24th European Signal Processing Conference, pp. 508-512. IEEE. 2016. | en |
dc.relation.references | Honda T., Nayar S.K. “Finding "anomalies" in an arbitrary image”, In: 2001. IEEE International Conference on Computer Vision, vol. 2, pp. 516-523. IEEE. 2001. | en |
dc.relation.references | Tax D.M., Duin R.P. “Support vector data description”, Machine learning, 54(1), 45-66 2004 | en |
dc.relation.references | Ruff L., Gornitz N., Deecke L., Siddiqui S.A., Vandermeulen R., Binder A., Muller E., Kloft M. “Deep one-class classification”, In: International Conference on Machine Learning, pp. 4390-4399. 2018. | en |
dc.relation.references | Margolin R., Tal A., Zelnik-Manor L. “What makes a patch distinct?” In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1139-1146. 2013. | en |
dc.relation.references | Li S., Wang W., Qi H., Ayhan B., Kwan C., Vance S. “Low-rank tensor decomposition based anomaly detection for hyperspectral imagery”, In: 2015 IEEE International Conference on Image Processing, pp. 4525-4529. 2015 | en |
dc.relation.references | Boracchi G., Carrera D., Wohlberg B. “Novelty detection in images by sparse representations”, In: 2014 IEEE Symposium on Intelligent Embedded Systems, pp. 47-54. IEEE. 2014 | en |
dc.relation.references | Seo H.J., Milanfar P. “Static and space-time visual saliency detection by self-resemblance”, Journal of vision, 9(12), 15-15. 2009. | en |
dc.relation.references | Zontak M., Cohen I. “Defect detection in patterned wafers using anisotropic kernels”, Machine Vision and Applications, 21(2), 129-141. 2010 | en |
dc.relation.references | Davy A., Ehret T., Morel J.M., Delbracio M. “Reducing anomaly detection in images to detection in noise”, In: 2018 IEEE International Conference on Image Processing, pp. 1058-1062. IEEE. 2018. | en |
dc.relation.references | Hoffmann H. “Kernel pca for novelty detection”, Pattern recognition, 40(3), 863-874. 2007. | en |
dc.identifier.doi | https://doi.org/10.31649/1999-9941-2024-59-1-13-22 |
Файли в цьому документі
Даний документ включений в наступну(і) колекцію(ї)
-
Наукові роботи каф. АІІТ [268]
статті, матеріали конференцій -
Інформаційні технології та комп'ютерна інженерія. 2024. № 1 [5]