dc.contributor.author | Андрікевич, С. А. | uk |
dc.contributor.author | Тужанський, С. Є. | uk |
dc.contributor.author | Andrikevych, S. | en |
dc.contributor.author | Tuzhanskyi, S. | en |
dc.date.accessioned | 2024-10-26T12:44:28Z | |
dc.date.available | 2024-10-26T12:44:28Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Андрікевич С. А., Тужанський С. Є. Методи сегментації оптичних зображень очного дна. Оптико-електроннi iнформацiйно-енергетичнi технологiї. 2024. Том 47, № 1. С. 155–165. | uk |
dc.identifier.issn | 1681-7893 | |
dc.identifier.uri | https://ir.lib.vntu.edu.ua//handle/123456789/43397 | |
dc.description.abstract | The paper presents a comparative analysis and evaluation of methods for segmenting
optical fundus images in order to study their efficiency, accuracy, completeness, and
computational complexity in Matlab. The methods analyzed are Otsu, adaptive thresholding,
Watershed, K-means, maximum expectation algorithm (EM), and Frangi method. The features,
advantages and disadvantages in the context of application for the diagnosis of fundus diseases
are considered | en |
dc.description.abstract | У статті проводиться порівняльний аналіз та оцінювання методів сегментації оптичних зображень очного дна з метою дослідження їх ефективності, точності, повноти та обчислювальної складності у Matlab. Проаналізовані методи Otsu, адаптивного порогування, Watershed, K-середніх, алгоритм максимальної очікуваності (EM) та метод Франгі. Розглянуто особливості, переваги та недоліки в контексті застосування для діагностики захворювань очного дна | uk |
dc.language.iso | uk_UA | uk_UA |
dc.publisher | ВНТУ | uk |
dc.relation.ispartof | Оптико-електроннi iнформацiйно-енергетичнi технологiї. №1 : 155–165. | uk |
dc.relation.uri | https://oeipt.vntu.edu.ua/index.php/oeipt/article/view/701 | |
dc.subject | очне дно | uk |
dc.subject | Matlab | en |
dc.subject | метод сегментації оптичних зображень | uk |
dc.subject | Fundus | en |
dc.subject | optical image segmentation method | en |
dc.title | Методи сегментації оптичних зображень очного дна | uk |
dc.title.alternative | Optical fundus image segmentation methods | en |
dc.type | Article, professional native edition | |
dc.type | Article | |
dc.identifier.udc | 004.9 | |
dc.relation.references | Wójcik, W., Pavlov, S., Kalimoldayev, M. (2019). Information Technology in Medical Diagnostics II.
London: Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages, https://doi.org/10.1201/
9780429057618. eBook ISBN 9780429057618. | en |
dc.relation.references | Grychaniuk, I., & Nosovets, O. (2021). Analysis of data augmentation methods for retinal vessel
segmentation tasks. Molodyi vchenyi, 10 (98), 1-5. URL: https://doi.org/10.32839/2304-5809/2021-10-
98-23 | en |
dc.relation.references | Almotiri, J.; Elleithy, K.; Elleithy, A. (2018). Retinal Vessels Segmentation Techniques and
Algorithms: A Survey. Appl. Sci., 8, 155. URL: https://doi.org/10.3390/app8020155 | en |
dc.relation.references | Ilesanmi, A. E., Ilesanmi, T., & Gbotoso, G. A. (2023). A systematic review of retinal fundus image
segmentation and classification methods using convolutional neural networks. Healthcare Analytics, 4,
100261. ISSN 2772-4425. URL: https://doi.org/10.1016/j.health.2023.100261. | en |
dc.relation.references | Gilat, A. (2004). MATLAB: An Introduction with Applications 2nd Edition. John Wiley & Sons. ISBN
978-0-471-69420-5. | en |
dc.relation.references | Retinal Image Preprocessing: Background and Noise Segmentation. ResearchGate. URL:
https://www.researchgate.net/publication/260350802_Retinal_Image_Preprocessing_Background_and_
Noise_Segmentation | en |
dc.relation.references | Sarki, R., Ahmed, K., Wang, H., Zhang, Y., Ma, J., & Wang, K. (2021). Image Preprocessing in
Classification and Identification of Diabetic Eye Diseases. Data Sci Eng., 6(4), 455-471. URL:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370665/ | en |
dc.relation.references | Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., & Abramoff, M. D. (2004). Comparative study of
retinal vessel segmentation methods on a new publicly available database. Proc. SPIE 5370, Medical
Imaging 2004: Image Processing, (12 May 2004). URL: https://doi.org/10.1117/12.535349 | en |
dc.relation.references | Saha Tchinda, B., Tchiotsop, D., Noubom, M., Louis-Dorr, V., & Wolf, D. (2021). Retinal blood
vessels segmentation using classical edge detection filters and the neural network. Informatics in
Medicine Unlocked, 23, 100521. ISSN 2352-9148. URL: https://doi.org/10.1016/j.imu.2021.100521 | en |
dc.relation.references | Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on
Systems, Man, and Cybernetics, 9(1), 62-66. URL: https://ieeexplore.ieee.org/document/4310076 | en |
dc.relation.references | Bradley, D., & Roth, G. (2007). Adaptive thresholding using the integral image. Journal of Graphics
Tools, 12(2), 13-21. URL: https://doi.org/10.1080/2151237X.2007.10129236. | en |
dc.relation.references | Marciniak, T., Stankiewicz, A., & Zaradzki, P. (2023). Neural Networks Application for Accurate
Retina Vessel Segmentation from OCT Fundus Reconstruction. Sensors, 23, 1870. URL:
https://doi.org/10.3390/s23041870 | en |
dc.relation.references | Introduction to K-Means Clustering Algorithm. Analytics Vidhya. URL:
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/. | en |
dc.relation.references | . Sigworth, F. J., Doerschuk, P. C., Carazo, J. M., & Scheres, S. H. (2010). An introduction to maximumlikelihood methods in cryo-EM. Methods Enzymol., 482, 263-94. URL: https://doi.org/10.1016/S0076-
6879(10)82011-7. | en |
dc.relation.references | Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel
enhancement filtering. Lecture Notes in Computer Science, 1496, 130-137. URL:
https://doi.org/10.1007/BFb0056195. | en |
dc.relation.references | Pavlov S.V., Martianova T.A., Saldan Y.R., and etc., “Methods and computer tools for identifying
diabetes-induced fundus pathology”, Information Technology in Medical Diagnostics II. CRC Press,
Balkema book, Taylor & Francis Group, London, UK, 87-99, 2019 | en |
dc.relation.references | SaldanYosyp, Sergii Pavlov, Vovkotrub Dina, Waldemar Wójcik, and etc., “Efficiency of opticalelectronic systems: methods application for the analysis of structural changes in the process of eye
grounds diagnosis,”, Proc. SPIE 10445, Photonics Applications in Astronomy, Communications,
Industry, and High Energy Physics Experiments 2017, 104450S (2017). | en |
dc.relation.references | Lytvynenko, V., Lurie, I., Voronenko, M., etc., “The use of Bayesian methods in the task of localizing
the narcotic substances distribution,” International Scientific and Technical Conference on Computer
Sciences and Information Technologies, 2, 8929835, 60–63 (2019). | en |
dc.relation.references | Friedman, Jerome, Trevor Hastie, and Robert Tibshirani., “The elements of statistical learning,”
hastie.su.domains/ElemStatLearn (2009). | en |
dc.relation.references | Kvyetnyy Roman, Bunyak Yuriy, Sofina Olga, and etc., "Blur recognition using second fundamental
form of image surface," Proc. SPIE 9816, Optical Fibers and Their Applications 2015, 98161A (17
December 2015). | en |
dc.relation.references | Zabolotna, N. I., Sholota V. V., Okarskyi H. H.,“Methods and systems of polarization reproduction and
analysis of the biological layers structure in the diagnosis of pathologies,” Proc. SPIE 11369, 113691S
(2020) | en |
dc.relation.references | Avrunin O.G., Tymkovych M.Y., Saed H.F.I., etc., “Application of 3D printing technologies in
building patient-specific training systems for computing planning in rhinology,” Information
Technology in Medical Diagnostics II - Proceedings of the International Scientific Internet Conference
on Computer Graphics and Image Processing and 48th International Scientific and Practical Conference
on Application of Lasers in Medicine and Biology, 7 (2019) | en |
dc.relation.references | Selivanova K.G., Avrunin O.G., Tymkovych M.Y., Manhora T.V., etc., “3D visualization of human
body internal structures surface during stereo-endoscopic operations using computer vision techniques,”
Przeglad Elektrotechniczny, 9, 30-33 (2021). | en |
dc.relation.references | Tymkovych M., Gryshkov O., Avrunin O., Selivanova K., etc. “Application of SOFA Framework for
Physics-Based Simulation of Deformable Human Anatomy of Nasal Cavity”, IFMBE Proceedings, 112
(2021). | en |
dc.identifier.doi | https://doi.org/10.31649/1681-7893-2024-47-1-155-165 | |
dc.identifier.orcid | https://orcid.org/0000-0002-0185-7490 | |