Concurrent extreme learningbased demand response optimizer for blockchainenabled peer-to-peer energy trading in residential microgrids
Author
Singh, A. R.
Kumar, R. S.
Ballireddy, T. R. R.
Khadse, C. B.
Bajaj, M.
Rubanenko, O.
Рубаненкo, О.
Date
2025Metadata
Show full item recordCollections
- JetIQ [219]
Abstract
Residential microgrids (MGs) increasingly rely on decentralized energy sources and peer-to-peer energy trading mechanisms to maintain uninterrupted power distribution. However, ensuring concurrency between dynamic energy demands and supply responses remains a critical challenge, especially under fluctuating load and availability conditions. This study proposes a novel Demand Response Optimizer Model (DROM), leveraging Concurrent Extreme Learning (CEL), and blockchain (BC)-based verification to enhance fairness, responsiveness, and efficiency in energy allocation within residential MGs. The proposed DROM incorporates a feed-forward neural network architecture, in demand biasing and trading weights are adaptively computed to optimize energy dispatch. A BC framework is employed for decentralized storage and validation of transactional records, preserving system transparency, data integrity, and facilitating real-time energy trading decisions. The model operates across two user categories—Type 1 (building/peer-level) and Type 2 (residential individual)—and dynamically balances demand and response by minimizing bias while maximizing weight assignments across energy requests. The system is evaluated using real-world MG simulation data. Empirical results demonstrate that the proposed model achieves a 14.62% increase in optimal energy trading efficiency and a 14.77% improvement in demand coverage for Type 2 users. Furthermore, the framework delivers a 16.11% enhancement in power distribution and a 14.01% gain in trading reliability compared to benchmark methods. These findings underscore the effectiveness of the CEL-based BC-integrated framework in addressing concurrency, demand suppression, and equitable energy sharing in decentralized smart energy networks.
URI:
https://ir.lib.vntu.edu.ua//handle/123456789/50037

