Показати скорочену інформацію

dc.contributor.authorKotov, Ya.en
dc.contributor.authorYavorska, E.en
dc.contributor.authorTsupryk, Н.en
dc.contributor.authorDzierżak, R.en
dc.contributor.authorReshetnik, О.en
dc.contributor.authorBokovets, V.en
dc.contributor.authorРешетнік, О. О.uk
dc.contributor.authorБоковець, В. В.uk
dc.date.accessioned2026-01-08T13:02:06Z
dc.date.available2026-01-08T13:02:06Z
dc.date.issued2025
dc.identifier.citationKotov Ya., Yavorska E., Tsupryk Н., Dzierżak R., Reshetnik О., Bokovets V. Evaluating interoperability and data quality in FHIR-based AI assessment pipelines // Proc. SPIE. Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2025, Vol. 14009, Lublin, Poland, 30 December 2025. Lublin, 2025. DOI: https://doi.org/10.1117/12.3100561.en
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/50395
dc.description.abstractWe present a comprehensive implementation and evaluation of a Fast Healthcare Interoperability Resources (FHIR)– based pipeline for patient-facing AI assessment. In this pipeline, patient-reported symptoms are ingested via a FHIRcompliant REST API as Observation resources, processed by an AI inference engine, and returned as structured FHIR output (e.g. Condition or DiagnosticReport resources). We performed a synthetic comparative study against a traditional, non-standardized data exchange approach (such as ad-hoc JSON or HL7 v2), measuring key metrics: data transmission latency, information completeness, and semantic integrity. Our results show that the FHIR pipeline yields substantially higher data completeness and fidelity (capturing nearly all required fields with correct coding) compared to the legacy format, at the cost of only modest increases in payload size and processing time. In numbers, the FHIR approach retained about 95% of required data fields versus ~70% for the custom pipeline, illustrating the benefit of standardized resource profiles. These findings align with prior work on FHIR-enabled data harmonization pipelines. We conclude that using FHIR standards significantly enhances data quality and interoperability for AI-driven patient assessment, providing a reusable blueprint for clinical AI system developers. All code for pipeline diagrams and performance charts (using Graphviz, Mermaid, Matplotlib, etc.) is made available to support reproducibility.en
dc.language.isoen_USen_US
dc.publisherSPIEen
dc.relation.ispartofProc. SPIE. Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2025, Vol. 14009, Lublin, Poland, 30 December 2025.en
dc.subjectartificial intelligenceen
dc.subjectgenerative language modelsen
dc.subjectmedical history (anamnesis)en
dc.subjectHL7 FHIRen
dc.subjectservice-oriented architectureen
dc.subjectinteroperabilityen
dc.subjectmedical image managementen
dc.titleEvaluating interoperability and data quality in FHIR-based AI assessment pipelinesen
dc.typeArticle, Scopus-WoS
dc.typeArticle
dc.identifier.doihttps://doi.org/10.1117/12.3100561


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію