• English
    • українська
  • українська 
    • English
    • українська
  • Увійти
Дивитися документ 
  • Головна
  • Факультет електроенергетики та електромеханіки
  • Кафедра загальної фізики
  • Наукові роботи каф. ЗФ
  • Дивитися документ
  • Головна
  • Факультет електроенергетики та електромеханіки
  • Кафедра загальної фізики
  • Наукові роботи каф. ЗФ
  • Дивитися документ
Сайт інституційного репозитарію ВНТУ містить роботи, матеріали та файли, які були розміщені докторантами, аспірантами та студентами Вінницького Національного Технічного Університету. Для розширення функцій сайту рекомендується увімкнути JavaScript.

Convolutional neural networks for early computer diagnosis of child dysplasia

Автор
Bilynsky, Yosyp
Nikolskyy, Aleksandr
Revenok, Viktor
Pogorilyi, Vasyl
Smailova, Saule
Voloshina, Oksana
Kumargazhanova, Saule
Білинський, Й. Й.
Дата
2023
Metadata
Показати повну інформацію
Collections
  • Наукові роботи каф. ЗФ [242]
Анотації
The problem in ultrasound diagnostics hip dysplasia is the lack of experience of the doctor in case of incorrect orientation of the hip joint and ultrasound head. The aim of this study was to evaluate the ability of the convolutional neural network (CNN) to classify and recognize ultrasound imaging of the hip joint obtained at the correct and incorrect position of the ultrasound sensor head in the computer diagnosis of pediatric dysplasia. CNN`s such as GoogleNet, SqueezeNet, and AlexNet were ed for the study. The most optimal for the task is the use of CNN GoogleNet showed. In this CNN used transfer learning. At the same time, fine-tuning of the network and additional training on the database of 97 standards of ultrasonic images of the hip joint were applied. Image type RGB 32 bit, 210 × 300 pixels are used. Fine-tuning has been performed the lower layers of the structure CNN, in which 5 classes are allocated, respectively 4 classes of hip dysplasia types according to the Graf, and the Type ERROR ultrasound image, position of the ultrasound sensor head and of the hip joint in ultrasound diagnostics are incorrect orientation. It was found that the authenticity of training and testing is the highest for the GoogleNet network: when classified in the training group accuracy is up to 100%, when classified in the test group accuracy – 84.5%.
URI:
http://ir.lib.vntu.edu.ua//handle/123456789/37649
Відкрити
131005.pdf (4.694Mb)

Інституційний репозиторій

ГоловнаПошукДовідкаКонтактиПро нас

Ресурси

JetIQСайт бібліотекиСайт університетаЕлектронний каталог ВНТУ

Перегляд

Всі архівиСпільноти та колекціїЗа датою публікаціїАвторамиНазвамиТемамиТипВидавництвоМоваУДКISSNВидання, що міститьDOIЦя колекціяЗа датою публікаціїАвторамиНазвамиТемамиТипВидавництвоМоваУДКISSNВидання, що міститьDOI

Мій обліковий запис

ВхідРеєстрація

Статистика

View Usage Statistics

ISSN 2413-6360 | Головна | Відправити відгук | Довідка | Контакти | Про нас
© 2016 Vinnytsia National Technical University | Extra plugins code by VNTU Linuxoids | Powered by DSpace
Працює за підтримки 
НТБ ВНТУ