Показати скорочену інформацію

dc.contributor.authorBilynsky, Yosypen
dc.contributor.authorNikolskyy, Aleksandren
dc.contributor.authorRevenok, Viktoren
dc.contributor.authorPogorilyi, Vasylen
dc.contributor.authorSmailova, Sauleen
dc.contributor.authorVoloshina, Oksanaen
dc.contributor.authorKumargazhanova, Sauleen
dc.contributor.authorБілинський, Й. Й.uk
dc.date.accessioned2023-07-07T07:41:09Z
dc.date.available2023-07-07T07:41:09Z
dc.date.issued2023
dc.identifier.citationBilynsky Yo., Nikolskyy A., Revenok V., Pogorilyi V., Smailova S., Voloshina O., Kumargazhanova S. Convolutional neural networks for early computer diagnosis of child dysplasia. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska. 2023. № 2. P.56-63.en
dc.identifier.issn2083-0157
dc.identifier.urihttp://ir.lib.vntu.edu.ua//handle/123456789/37649
dc.description.abstractThe problem in ultrasound diagnostics hip dysplasia is the lack of experience of the doctor in case of incorrect orientation of the hip joint and ultrasound head. The aim of this study was to evaluate the ability of the convolutional neural network (CNN) to classify and recognize ultrasound imaging of the hip joint obtained at the correct and incorrect position of the ultrasound sensor head in the computer diagnosis of pediatric dysplasia. CNN`s such as GoogleNet, SqueezeNet, and AlexNet were ed for the study. The most optimal for the task is the use of CNN GoogleNet showed. In this CNN used transfer learning. At the same time, fine-tuning of the network and additional training on the database of 97 standards of ultrasonic images of the hip joint were applied. Image type RGB 32 bit, 210 × 300 pixels are used. Fine-tuning has been performed the lower layers of the structure CNN, in which 5 classes are allocated, respectively 4 classes of hip dysplasia types according to the Graf, and the Type ERROR ultrasound image, position of the ultrasound sensor head and of the hip joint in ultrasound diagnostics are incorrect orientation. It was found that the authenticity of training and testing is the highest for the GoogleNet network: when classified in the training group accuracy is up to 100%, when classified in the test group accuracy – 84.5%.en
dc.language.isoenen
dc.publisherLublin University of Technologyen
dc.relation.ispartofInformatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska. № 2 : 56–63.pl
dc.subjectconvolutional neural networksen
dc.subjectcomputer diagnosisen
dc.subjectultrasound image child dysplasiaen
dc.titleConvolutional neural networks for early computer diagnosis of child dysplasiaen
dc.typeArticle
dc.identifier.doihttps://doi.org/10.5604/20830157.1193833
dc.identifier.orcidhttps://orcid.org/http://orcid.org/0000-0002-9659-7221


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію