Показати скорочену інформацію

dc.contributor.authorKabachii, K.en
dc.contributor.authorMaslii, R.en
dc.contributor.authorKozlovskyi, S.en
dc.contributor.authorDronchack, О.en
dc.contributor.authorКабачій, В. В.uk
dc.contributor.authorМаслій, Р. В.en
dc.contributor.authorКозловський, С. В.en
dc.contributor.authorДрончак, О.en
dc.date.accessioned2025-04-04T11:41:08Z
dc.date.available2025-04-04T11:41:08Z
dc.date.issued2023
dc.identifier.citationKabachii K., Maslii R., Kozlovskyi S., Dronchack О. Identifying moments of decision making on trade in financial time series using fuzzy cluster analysis // Neuro-Fuzzy Modeling Techniques in Economics. 2023. Vol. 12. Pp. 175-205.en
dc.identifier.issn2415-3516
dc.identifier.urihttps://ir.lib.vntu.edu.ua//handle/123456789/46243
dc.description.abstractThe article investigates the problem of identifying trading decision points in financial time series using the Fuzzy C-Means (FCM) method. The authors argue that classical forecasting methods have limited effectiveness for decision-making in trading, as they do not take into account market structure and nonlinear patterns. The proposed methodology involves analysing time series using additional features derived from technical indicators (MACD, Stochastic) and further clustering based on FCM, which allows identifying market entry and exit points. In contrast to traditional approaches based on the assessment of forecasting accuracy (e.g. MAE, RMSE, MAPE), this study focuses on financially oriented metrics such as Net Profit, Max Drawdown, Win Rate and Profit Factor, which more accurately reflect the effectiveness of trading strategies in real market conditions. Experiments on the currency pairs EUR/USD, AUD/USD, USD/JPY, USD/CAD on daily and four-hour timeframes have demonstrated that the use of the proposed approach can improve the efficiency of trading strategies. The simulation results showed fairly high stable profitability results with low risks (drawdown). The proposed approach can be useful in developing automated trading systems and further research in the field of financial analytics.en
dc.language.isoenen
dc.publisherVadym Hetman Kyiv National University of Economicsen
dc.relation.ispartofNeuro-Fuzzy Modeling Techniques in Economics. Vol. 12 : 175-205.en
dc.relation.urihttps://nfmte.kneu.ua/archive/2023/12.07
dc.subjectfinancial time seriesen
dc.subjecttradingen
dc.subjectcluster analysisen
dc.subjectfuzzy c-meansen
dc.subjecttechnical analysisen
dc.subjectfinancial performance metricsen
dc.subjecttrend predictionen
dc.titleIdentifying moments of decision making on trade in financial time series using fuzzy cluster analysisen
dc.typeArticle, Scopus-WoS
dc.typeArticle
dc.identifier.doihttp://doi.org/10.33111/nfmte.2023.175
dc.identifier.orcidhttps://orcid.org/0009-0001-3158-2889
dc.identifier.orcidhttps://orcid.org/0000-0003-3021-4328
dc.identifier.orcidhttps://orcid.org/0000-0003-0707-4996
dc.identifier.orcidhttps://orcid.org/0009-0006-2536-9906


Файли в цьому документі

Thumbnail

Даний документ включений в наступну(і) колекцію(ї)

Показати скорочену інформацію